Errata for E．G．M．O．
 https：／／web．evanchen．cc／geombook．html Evan Chen《陳詯廷》

Last updated February 6， 2024

This document contains an exhaustive list of all mistakes that I am aware of in my textbook Euclidean Geometry in Mathematical Olympiads．Most are annoying but benign， but a few are substantial－these are emphasized in bold sans serif red，in a slightly larger font．You can send any more mistakes you find to the author at the email on evanchen．cc．

I currently do not have any plans to create a second edition．
p．xi append a comma after＂lectures at MOP＂．
p．xiii change＂explain how it comes from＂to＂explain where it comes from＂．
p．xiv second bullet，the phrase＂intersection the medians＂is missing＂of＂．
p． 3 in example 1．1，assume $W X Y Z$ is convex as in the figure．
p． 4 the proof of Theorem 1.3 assumes O is inside $\triangle A B C$ ．One should do （annoyingly）the other cases by a similar argument as well．
p． 7 beneath Figure 1．3A，change＂orthocenter of H＂to＂orthocenter of $A B C$＂．
p． 9 in Problem 1．16，change $\triangle B F D$ and $\triangle C D E$ to $\triangle D B F$ and $\triangle D E C$ ．
p． 10 change（ $L B C$ ）to（ $I B C$ ）in the paragraph starting＂Because $L B=L I=L C$＂．
p． 12 Theorem 1．22，the four points could also be collinear．That is，$\measuredangle A X B=$ $\measuredangle A Y B$ if and only if A, B, X, Y lie on a circle or a line．
p． 12 Proposition 1.24 ，the isosceles triangle condition holds only when A, B, C are not collinear．
p． 16 in problem 1．33，change＂$\angle K C=90^{\circ}$＂to＂$\angle K C B=90^{\circ}$＂．
p． 17 last paragraph，change＂inscribed arcs＂to＂inscribed angles＂．
p． 18 in problem 1．37，delete the word＂again＂in the definition of Q ．
p． 18 in problem 1.38 ，it would be better to say＂prove $I_{1} I_{2} C B$ is cyclic＂for clarity since this is the order in which the vertices actually appear．Also，quadrilateral $A B C D$ should be required to be convex．
p． 18 in problem 1．39，I is the incenter of $\triangle A B C$ ．
p． 19 in problem 1.45 ，change＂ray $B I$＂to＂the $\angle B$－bisector＂．
p． 20 in problem 1．47，change＂Let $A B C$ be triangle＂to＂Let $A B C$ be a triangle＂．
p． 20 in lemma 1．48，the converse should be proven to since it is quoted on page 59.
p． 24 in problem 2．2，change $\measuredangle B C A=\measuredangle Y Z X$ to $\measuredangle A B C=\measuredangle X Y Z$ ．
p． 28 change＂immediately corollary＂to＂immediate corollary＂．
p． 29 in Theorem 2．9，excise＂of Intersecting Circles＂from the theorem name．
p． 29 in proof of Theorem 2．9，change both >0＇s to <0＇s．
p． 30 bottom of page，＂coaxal＂should be＂coaxial＂．
p． 31 in Lemma 2．13，the circles can also be tangent to one another at X（i．e．the intersection is counted with multiplicity）．
p． 32 near start of S2．6，＂alluded the excenter＂is missing＂to＂．
p． 33 in Lemma 2．20，swap the definitions of X and D ．（The problem is technically correct as stated，but it should be consistent with Figure 2．6A．）
p． 34 in the discussion for Example 2．21，the definition of O_{1} and O_{2} is accidentally omitted（but is obvious from the figure）．
p． 34 in discussion to Example 2．21，in＂we already know that that lines $P Q, R S$ ，and $X Y$ concur at a point X＂，the extraneous＂that＂and＂X＂should both be deleted．
p． 34 end of third paragraph in discussion to Example 2．21，change＂ω_{1} an ω_{3}＂to＂ω_{1} and $\omega_{3} "$ and change $O_{1} O_{3}$ to $\overline{O_{2} O_{3}}$ ．
p． 35 in the second set of aligned equations，change $\mathrm{O}_{2} \mathrm{X}^{2}$ to OO_{2}^{2} ．
p． 35 very bottom of page，change＂circumradii＂to＂radii＂．
p． 37 Example 2．23，the source is Russia 2011，not 2010.
p． 39 Example 2．24，I is the incenter．
p． 40 Problem 2．29，change＂six points＂to＂the six points＂．
p． 40 Problem 2．30，the lines may also be pairwise parallel．
p． 46 change $\frac{1}{1} \frac{1}{1} \frac{1}{1}=1$ to $1 \cdot 1 \cdot 1=1$ ．（not technically wrong but quite misleading as written．）
p． 47 before figure 3．3B，change $A A_{1}=p$ to $A A_{1}=|p|$ ；ditto for B_{1} and C_{1} ．
p． 48 Theorem 3．8，the lines may also be pairwise parallel．
p． 49 when defining homothety，$h(P)$ must also lie on line $P O$ ．
p． 49 third to last line，lengths are multiplied by $|k|$ ．
p． 51 before Lemma，in＂this circles is called the nine－point circle＂，change＂circles＂to ＂circle＂．
p． 51 Lemma 3．13，change $2: 1$ to $1: 2$ ．
p． 54 third paragraph，change＂pick let＂to＂let＂．
p． 55 immediately after display，$\measuredangle B H_{A} O$ should be $\measuredangle O H_{A} B$ ．
p． 56 in the Ceva application，change $\frac{B F}{F A}$ to $\frac{A F}{F B}$ ．
p． 57 in Problem 3.25 require $A B C D$ to be convex．
p． 59 after Problem 4．2，change $A H P K^{\prime}$ to $A H K^{\prime} P$ ．
p． 61 before Problem 4．8，the definition of D is omitted（but obvious from Figure 4．2B）．
p． 65 Problem 4．25，change $\frac{B M}{M C}$ to $\frac{C M}{M B}$ ．
p． 67 in Lemma 4．33，change the second ω to Ω ．
p． 68 just before Problem 4．38，change＂show＂to＂shown＂．
p． 71 Problem 4.53 is missing a trailing period．
p． 76 Theorem 5.1 is missing a factor of $\frac{1}{2}$ ．
p． 76 The shoelace formula is antisymmetric，not symmetric．
p． 89 at the start of the final paragraph in solution to Example 5.14 change＂if and only θ＂to＂if and only if θ＂．
p． 89 to finish example 5.14 ，one should also verify that $\angle A=60^{\circ}$ and $\angle A=90^{\circ}$ actually work．As written，this is a proof that only 60° and 90° could work，and does not mention the converse direction．
p． 92 In Problem 5．23，when defining point G ，line $H E$ should intersect Γ_{1} ， not Γ_{2} ．Also，＂interest＂should be＂intersect＂in the first line．
p． 97 Figure 6.2 A ，should be $i z=-4+3 i$ ．
p． 98 after the display，is should not be in math mode．
p． 100 in the first sentence of the paragraph before Theorem 6．7，delete the extra repeated＂that＂．
p． 101 in the proof of Example 6．10，Lemma 6.3 should be Lemma 6．5．Also，$\frac{x a}{b c}$ should be $\frac{b c}{x a}$（two changes）．
p． 101 in the proof of Lemma 6．12，every logical \Longrightarrow should really be a bidirectional \Longleftrightarrow for the proof to be executed correctly．
p． 103 second to last paragraph，replace＂indeed cyclic＂with＂indeed concyclic＂．
p． 104 in the proof of 6.16 ，replace＂similar＂with＂directly similar＂．
p． 105 in Problem 6.20 change＂Theorem 6.16 ＂to＂Theorem 6．15＂．
p． 107 The proof of the theorem has several issues，and is probably best to just ignore．The figure 6．6B is similarly broken．（The result is still true．）
p． 109 Third paragraph，$A=x^{2}, B=y^{2}, C=z^{2}$ should just be $a=x^{2}, b=y^{2}, c=z^{2}$ though this doesn＇t really matter．
p． $1 \mathbf{1 1}$ the last expression should actually be negated．
p． 112 in the second displayed line，change $y^{2}+x^{2} z / y$ to $-y^{2}+x^{2} z / y$ ．In the fourth， change the second y^{2} / z^{2} to z^{2} / y^{2} ．In the ninth，change the second y^{2} / z^{2} to z^{2} / y^{2} ． In the penultimate display（starting from b_{1} ），change the period to a comma．
p． 113 in the definition of M_{2} ，change $D H_{A}$ to $A H_{A}$ ．
p． 113 First line after the end of Solution to Example 6．26，change $A B$ to $B C$ ．
p． 114 Solution to Example 6．27，the a in the numerator of a^{\prime} should be \bar{a} ．Follow through with the rest of the solution．
p． 114 Solution to Example 6．27，near the end，negate all terms of $\sum(a \bar{b}-a \bar{c}+c \bar{a}-b \bar{a})$
p． 115 In Lemma 6．30，＂chord $A B$＂should technically be＂line $A B$＂．
p． 117 in Problem 6.38 （which starts on the previous page），the similarity $\triangle D P O \sim$ $\triangle P E Q$ should be a direct similarity．
p． 120 change $P A B$ to $P X Y$ ．
p． 121 change＂his idea＂to＂this idea＂．
p． 121 ＂delimited with colons＂should be＂delimited with commas＂．
p． 125 at the end of the proof of Theorem 7．13，change＂occurs only when＂to＂occurs precisely when＂，since the statement is if－and－only－if．
p． 126 before Theorem 7．14，the quote
As a result，however：It is important that $x+y+z=1$ when doing calculations with displacement vectors．
is confusing as written，since in a displacement vector the coordinates sum to zero．It would be better to say something like＂Coordinates of points should be normalized to sum 1，so that displacement vectors always have coordinates with sum 0 ＂．
p． 126 in Theorem 7.14 and proof，$|P Q|^{2}$ should technically be just $P Q^{2}$ ．
p． 128 after the first display，although it＇s obvious what＇s meant，it would be better to write $\vec{O}=\overrightarrow{0}$ instead of $\vec{O}=0$ for consistency with the rest of the text．
p． 130 in the proof of Example 7．20，change $(b s: b: 2 b)=(b s: b: c)$ to $(b t: b: 2 b)=$ （ $b t: b: c$ ）．Omit $s=t / b$ which is never used．
p． 132 in the proof of Example 7．20，change $C=(0,0,1)$ to $D=(0,0,1)$ and $F=(0$ ： $b: b-a)$ to $F=(0: b: a-b)$ ．
p． 132 in the last display change $\angle F A D$ to $\angle K A D$ ．
p． 133 Proposition 7．21，last display，change S_{a} to S_{A} ．
p． 134 in the display before Theorem 7.25 ，change $\overrightarrow{H O}$ to $\overrightarrow{O H}$ ．
p． 134 after proving Lemma 7．24，although it＇s obvious what＇s meant，it would be better to write $\vec{O}=\overrightarrow{0}$ instead of $\vec{O}=0$ for consistency with the rest of the text．
p． 134 in Theorem 7.25 ，change $\overrightarrow{A O}, \overrightarrow{B O}, \overrightarrow{C O}$ to $\overrightarrow{O A}, \overrightarrow{O B}, \overrightarrow{O C}$ ．（Technically，the original theorem is still true，but this way the notation is consistent with preceding paragraph．）
p． 135 in Example 7．26，change both $\overrightarrow{P A}$＇s to $\overrightarrow{A P}$＇s，and $\overrightarrow{A O}$ to $\overrightarrow{O A}$ ．Also，although it＇s obvious what＇s meant，it would be better to write $\vec{O}=\overrightarrow{0}$ instead of $\vec{O}=0$ for consistency with the rest of the text．
p． 136 very top，$c=A E$ should be $c=A C$ ．
p． 137 in the definition of bolded term＂homogeneous coordinates＂，replace (x, y, z) with $(x: y: z)$ for clarity．
p． 137 in Example 7．28，change＂$\overline{B C}$＂to＂segment $B C$＂．
pp．137－138 the solution to 7.28 only addresses one direction though the other follows similar．
p． 138 eighth line from top，change $A D: A C$ to $A D: C D$ ．
p． 139 start of page，delete＂determinants and＂．
p． 139 in the sentence＂The second is that a homothety with ratio $2 . .$. ＂，delete＂that＂．
p． 139 Solution 7．29，change the first display to $0=c^{2}(t-1)+\left(a^{2}-b^{2}\right) \Longrightarrow t=\frac{c^{2}+b^{2}-a^{2}}{c^{2}}$ ．
p． 139 just before Example 7．30，the＂closing problem from Chapter 3＂（referencing TSTST 2011／4）should actually be＂penultimate problem from Chapter 3＂．The last problem from Chapter 3 is instead USAMO 2015／2．
p． 140 in the first display，$S_{A C}$ should be $S_{C A}$ for consistency．
p． 140 in the second display，$x+y$ should be $x-y$ ．
p． $141 H=\left(S_{B C}, S_{C A}, S_{A B}\right)$ should have colons and not commas．
p． 141 change＂$P=\left(x^{\prime}: y^{\prime}: z^{\prime}\right)=\left(x^{\prime}: y^{\prime}:-S_{A B}\right)$＂to＂$P=(x: y: z)=\left(x^{\prime}: y^{\prime}:-S_{A B}\right)$＂， $" 0=x^{\prime}-y^{\prime}+\left(\frac{S_{A C}-S_{B C}}{S_{A B}}\right) z^{\prime \prime}$ to＂ $0=x-y+\left(\frac{S_{A C}-S_{B C}}{S_{A B}}\right) z "$ ，and＂$a^{2} y^{\prime} z^{\prime}+b^{2} z^{\prime} x^{\prime}+$ $c^{2} x^{\prime} y^{\prime}=0$＂to＂$a^{2} y z+b^{2} z x+c^{2} x y=0$＂．
p． 142 very top，in $a^{2}=S_{A B}+S_{A C}$ ，change LHS to $a^{2} S_{A}$ ．Also，the rest of the solution is wrong，since a factor of two is dropped in the first display．
p． 144 second line of 7.42 ，change＂tangency points＂to＂tangency point＂．
p． 145 in Problem $7.44, C_{1}$ should be different from A or B ．
p． 145 in Problem 7．44，hints 12 and 66 should be deleted（see correction to 7.26 solution）．
p． 145 Problem 7.50 should clarify that $E \neq B$ and $F \neq C$ ．
p． 146 Problem 7．52，change $\angle P C B$ to $\angle P B C$ ．
p． 149 second paragraph of 8.1 ，change＂three ordinary points＂to＂three noncollinear ordinary points＂．
p． 149 third paragraph of 8.1 ，change R to r ．
p． 150 in Lemma 8．1，replace＂tangents from A^{*}＂with＂tangency points from A^{*}＂．
p． 151 at start of 8.2 ，in＂simplest example is a just a line＂，delete the extra＂a＂．
p． 151 immediately before figure，add a period after 8．2A．
p． 151 the proof of Proposition 8.5 only shows that ℓ^{*} is a subset of the circle γ ，and some bijection－like comment is technically needed to finish．
p． 152 right before theorem 8．7，change＂the following lemma＂to＂the following theorem＂．
p． 153 in Theorem 8．7（c），＂another circle＂does not imply distinctness．（To be precise， circles invert to themselves if and only if they are orthogonal．）
p． 153 Lemma 8.11 is misnamed，and should be＂inverting the circumcircle＂or＂inverting around the incircle＂．
p． 154 in Example 8.12 require $A B C D$ to be convex．
p． 154 in Step 6，change＂$W X Y Z$ is concyclic＂to＂W, X, Y, Z are concyclic＂．
p． 155 first bullet，delete the extra comma．
p． 156 change＂they are orthogonal＂to＂ω_{1} is orthogonal to ω_{2}＂，and insert＂We therefore say that they are orthogonal if one is orthogonal to the other．＂after the last sentence of the first paragraph．
p． $158 \Gamma_{A B}^{*}$ and $\Gamma_{A C}^{*}$ are rays，not lines（in both figure and text）．Also，ω_{0} is a semicircle rather than a circle．
p． 159 second line of Example 8．15，change＂tangent to ω at T＂to＂tangent to Ω at K＂． Also，in the second paragraph of the proof，change the last Γ to Ω ．
p． 159 in Lemma 8．16，change＂fixes B and C＂to＂swaps B and C＂．
p． 162 item 5 of list，change G_{1} to G_{1}^{*} ．Also G^{*} in the first paragraph of the solution．
p． 162 in the first sentence of the solution，change＂the intersection＂to＂the second intersection＂．
p． 163 step 3 ，change $B S^{*}$ to $B C^{*}$ ．
p． 163 switch C^{*} and D^{*} in the diagram 8．7D．
p． 164 change $\measuredangle B X^{*} G^{*}$ in the display to $\measuredangle B X G^{*}$ ．
p． 164 switch R^{*} and S^{*} in the diagram 8.7 E ．
p． 164 in the second sentence of the reduced problem，insert＂respectively＂．
p． 164 in Solution to Example 8．22，insert＂respectively＂in the definitions of C^{*}, D^{*} ； P^{*}, Q^{*} ，respectively．
p． 164 insert＂is＂between＂it isosceles＂．
p． 166 Problem 8.26 is BAMO 2008／4，not BAMO 2008／6．
p． 167 Problem 8.34 requires A, B, C, D to be distinct．
p． 167 Problem 8．36，＂circumcircle＂is misspelled．
p． 171 ＂if one of the angles＂would be clearer as＂if any of the angles＂，when defining the sign of $(a, b ; x, y)$ ．
p． 171 Theorem 9．2，change＂$\overline{A B}$ and $\overline{X Y}$＂to＂segments $A B$ and $X Y$＂．
p． 171 there＇s some abuse of notation in that $P(A, B ; X, Y)$ was technically only defined for $A B X Y$ collinear，but the intention is that $P(A, B ; X, Y)$ refers to the cross ratio obtained from the four lines concurrent at P ．
p． 172 in the paragraph before Figure 9．2C，＂（and vice versa）＂is redundant，it is in the previous sentence already．
p． 173 in Problem 9．3，the points should also be collinear．
p． 173 in Problem 9．4，add $k \neq 0$ ．
p． 173 7th line of Section 9．3，in＂we present four configurations＂，change＂four＂to ＂five＂．
p． 174 display in proof of Lemma 9．9，take perspectivity at Y ，not X ．After the display， also change every X to a Y in the following paragraph．
pp．174－175 in names of Lemmas 9．11－9．12，change＂Induces＂to＂Induce＂．
p． 175 ＂directed form＊of＊Ceva＇s theorem＂．
p． 176 in Problem 9．14，delete＂and Lemma 9．18＂（and＂proofs＂to＂proof＂）．
p． 177 in Lemma 9．18，change＂implies＂to＂imply＂．
p． 178 in the proof of Theorem 9．19，change $\angle C A Y=\angle Y B C$ to $\angle A C Y=\angle Y C B$ ．
p． 179 top of page，first sentence，ℓ is allowed to pass through O ．
p． 179 in proof of Proposition 9．24，La Hire is used implicitly at the end to get Q lies on the polar of P iff P lies on the polar of Q ．
p． 181 in Lemma 9．27，change＂pole＂to＂polar＂（two instances）．
p． 184 in Theorem 9．33，uniqueness is not true for（b）or（c）．The last sentence is also wrong as written．The correct sentence is：if the circumcircle of a cyclic quadrilateral is sent to a circle，then so is the cross ratio of the cyclic quadrilateral．
p． 184 in Example 9．34，swap the definitions of P, Q ．
p． 184 in solution to Example 9．34，replace the definition of P^{\prime} with $P^{\prime}=\overline{A^{\prime} B^{\prime}} \cap \overline{C^{\prime} D^{\prime}}$ ．
p． 185 in proof of Theorem 9．35，＂Because we must have the cross ratio ．．．is preserved＂ is grammatically broken，and should be changed to＂Because the cross ratio ．．．must be preserved＂or similar．
p． 185 in proof of Theorem 9．35，change $\left(P^{\prime}, Q^{\prime}, P_{\infty}^{\prime}, M^{\prime}\right)$ to $\left(P^{\prime}, Q^{\prime} ; P_{\infty}^{\prime}, M^{\prime}\right)$ and $\left(X^{\prime}, Y^{\prime}, P_{\infty}^{\prime}, M^{\prime}\right)$ to $\left(X^{\prime}, Y^{\prime} ; P_{\infty}^{\prime}, M^{\prime}\right)$ ．
p． 187 in solution to $9.38, I_{A}$ is the A－excenter（of course）．
p． 189 in Solution 1，T should be $\overline{A A} \cap \overline{C R}$ ．
p． 190 immediately before problems，P is the point at infinity along $\overline{A C}$ instead．
p． 191 the source＂Singapore TST＂of Problem 9.43 is a bit dubious．It seems to have come from https：／／aops．com／community／p3491333，which suggests the year is 2008，but is not present in https：／／aops．com／community／c3691＿2008＿ singapore＿team＿selection＿test．Go figure．
p． 191 in Problem 9．47，last line of problem statement，change＂circumference＂to ＂circumcircle＂．
p． 191 in Problem 9．48，the definition of E and F are swapped from the original source， though this has no bearing on the problem．
p． 192 Problem 9．54，should be the interiors of the sides，i．e．$C \neq D$ and $A \neq E$ ．
p． 193 Problem 9．58，delete the last＂again＂in definitions of P, Q ．
p． 196 it may be clearer if the remark $A B \neq C D$ was at the start of the page rather than the bottom of the page（unless one allows the spiral similarity centered at a point at infinity，which amounts to a translation）．
p． 196 right after Figure 10．1B，＂similar＂would be better as＂directly similar＂．
p． 198 in proof of 10.3 ，change＂$B C$ to $D A$＂to＂$B C$ to $A D$＂．
pp．198－∞ replace＂Gauss line＂with＂Newton－Gauss line＂everywhere－that＇s the standard term，apparently．
p． 200 in third sentence of proof，add＂of＂after＂radical center＂．
p． 201 Lemma 10．9，change＂though＂to＂through＂．
p． 201 The complete quadrilateral $A B C D$ is cyclic if A, B, C, D lie on a circle．
p． 202 Proposition 10．14，delete extra＂the＂before M ．
p． 202 part（a），the latter four circles should be $(P A B),(P C D),(Q A D),(Q B C)$ ．
p． 202 part（b），change＂$A B$ to $C D$＂to＂$A B$ to $D C$＂and change＂$B C$ to $D A$＂to＂$B C$ to $A D^{\prime \prime}$ ．
p． 205 solution to Example 10.16 should define O as the center of ω ，once it is proved that $K L K^{*} L^{*}$ is cyclic．
p． 206 problem 10．23，change＂IMO 2005／2＂to＂IMO 2005／5＂，and＂lie of the sides＂to ＂lie on the sides＂．
p． 209 problem 11．5，for clarity，expand＂USAMTS＂as＂USA Mathematical Talent Search＂，and require $A B C D$ to be convex．
p． 209 problem 11．6，change＂circumcenter＂to＂circumcircle＂．
p． 210 problem 11．8，assume $A B \neq A C$ ．
p． 210 problem 11．10，change＂$P A, P B, P C$＂to＂$A P, B P, C P$＂．Also，require P to not be the orthocenter．
p． 216 in phrase＂third column from the first column＂，change＂first＂to＂second＂．
p． 217 to be extremely pedantic，what＇s defined is a vector in \mathbb{R}^{n} ．In abstract algebra the definition of a vector is more general and there is not necessarily a norm or direction．
p． 218 in definition of vector addition，change to $\left\langle x_{1}+x_{2}, y_{1}+y_{2}\right\rangle$ ．
p． 218 the misspelled＂ofter＂should be＂often＂
p． 219 replace＂two vectors v and w＂with＂two vectors \vec{v} and \vec{w}＂．
p． 219 the dot product is not associative；that property does not even make sense for this operation，since is an operation from $\mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ ．
p． 221 hint 8 ，replace＂How you can＂with＂How can you＂．
p． 221 hint 12 is wrong（see page 268 correction below）．
p． 222 hint 40，＂It equivalent＂is missing＂is＂．
p． 222 hint 60 ，the inequality should be strict．
p． 221 hint 66 is wrong（see page 268 correction below）．
p． 223 hint 77 ，replace＂$\measuredangle C M N=\measuredangle B M N$＂with＂$\measuredangle C N M=\measuredangle B N M$＂．
p． 223 hint 83，replace＂not disjoint＂with＂not disjoint nor neither one is contained inside the other＂．
p． 223 hint 87 ，the inequality should be strict．
p． 223 hint 93，replace＂at least＂with＂more than＂．
p． 223 hint 96 is wrong（see page 274 correction below）．
p． 224 hint 113 ，replace＂$B_{1} B_{1}$＂with＂$B_{1} B_{2}$＂．
p． 224 hint 133，you only get four pairs if you ignore the condition T lies on arc $A Q B$ ．
p． 225 hint 164 should be：let $X=\overline{E F} \cap \overline{B C}$ and $Y=\overline{A D} \cap \overline{E F}$ ，show $(X, Y ; E, F)=-1$ ．
p． 226 hint 183 ，replace＂$A B C D$＂with＂$A B X Y$＂．
p． 226 hint 185，replace＂$\angle W X Y=40^{\circ}$＂with＂$\angle X Z Y=40^{\circ}$＂．
p． 226 hint 193，replace＂major arc $B C$＂with＂arc $\widehat{B A C}$＂．
p． 226 hint 197 is wrong（see correction to Solution 6.45 below）．
p． 226 hint 217，replace $\measuredangle B A C$ with $\measuredangle C A B$ and $\measuredangle B D C$ with $\measuredangle C D B$ ．
p． 226 hint 218，change $C D$ to $X Y$ ．
p． 227 hint 231，replace P, C, D with P, A, B ；replace $A B C D$ with $A X B Y$ ．
p． 227 hint $232, L$ should be the midpoint of $B C$ ．
p． 227 hint 252 ，replace O with O^{*} ．
p． 227 hint 255 ，replace A with C ．
p． 228 hint 257，change＂as do C and F＂to＂as do B and D＂．
p． 228 hint 267，change $Q S$ to $H K$ ．
p． 228 hint 274 ，the definition of point M is missing．Point M is the midpoint of $A B$ ．
p． 229 hint 296，in hint 296，＂$H_{A}=a+b+d$＂change H_{A} to h_{A} for consistency．
p． 229 hint 303，change first two instances of $d e$ to $b c$ ．
p． 229 hint 304，the comma in $K=\left(2 S_{B}, 2 S_{A}:-c^{2}\right)$ should be a colon，of course．
p． 229 hint 316，change＂the circle is＂to＂the circle is centered at＂．
p． 229 hint 321，delete＂applies＂．
p． 230 hint 340 ，replace P with $\overline{A_{1} A_{2}} \cap \overline{C_{1} C_{2}}$ ．
p． 230 hint 355，change $A C$ to $A B$ ．
p． 230 hint $362, X$ should instead be the second intersection of $Q I$ with the circumcircle．
p． 230 hint 364 ，the angle should be $B P C$ not $P B C$ ．
p． 231 hint 373 ，replace＂ $90^{\circ}-A$＂with＂ $90^{\circ}-B$＂．
p． 231 hint 380 ，replace＂ $\sin 30^{\circ}$＂with＂$i \sin 30^{\circ}$＂．
p． 231 hint 383，＂trigonometric＂is misspelled．
p． 231 hint 389 ，change L^{*} to A^{*} ．
p． 231 hint 393 ，delete＂$M=(0: 1: 1)$＂and change the later＂L＂to＂M＂．
p． 232 hint 422，the definition of point T is missing．Point T is the contact point of the A－mixtilinear incircle．
p． 232 hint 425，change＂reflection＂to＂reflections＂．
p． 233 hint 445，the fraction should be $\frac{(a+b+c) b c}{b^{2}+b c+c^{2}}$ ．
p． 233 hint 449，change A to C ．
p． 234 hint 499，change $F A R M$ to $\left.F A C E\right|^{1}$
p． 234 hint 500，the inequality should be strict．
p． 234 hint 506，the angles should be directed．
p． 235 hint 544，change＂equivalent＂to＂equivalent to＂．
p． 235 hint 554，change the similarity to $\triangle A O D \sim \triangle C O_{1} D$ ．
p． 235 hint 556 is broken．I have no memory of what I meant to write．
p． 236 hint 571，replace k with $A B$ ．

[^0]p． 236 hint 589 ，change \ldots to \cdots ．
p． 236 hint 594，＂midpoint＂should be＂median＂．
p． 237 hint 616 ，change the second＂ω＂to＂circle with diameter $\overline{P Q}$＂
p． 237 hint 633 ，change H to M ．
p． 238 hint 649 is wrong（see correction to Solution 6.45 below）．
p． 238 hint 653 is missing a period．
p． 238 hint 666 ，change $\frac{X B}{X A}$ to $\frac{X A}{X B}$ ．
p． 242 in Solution 1.46 ，should be $\triangle O^{\prime} A B \cong \triangle O D C$ ．
p． 243 in Solution 1．50，one also needs to check A, P, W are collinear．Thus， add the remark $\measuredangle N P A=\measuredangle N M A=\measuredangle N M C=\measuredangle N B C=\measuredangle N B W=$ $\measuredangle N P W$ ．（Radical axis also works．）
p． 246 in Solution 2．38，change＂circumcircle of ω＂to＂ω＂．
p． 246 in Solution 3．17，change $X_{1} Y_{1}$ to $X^{\prime} Y^{\prime}$ at the bottom（twice）．
p． 249 Solution 3．29，add a remark that $(A M N)$ is tangent to $(A B C)$ ．
p． 250 in Solution 4．50，second－to－last sentence，change＂circumcircle＂to＂circumcenter＂．
p． 251 in Solution 4．52，last display，change $\measuredangle B E D+\measuredangle B D E$ to $\measuredangle B E D+\measuredangle D B E$ ．
p． 252 in Solution 5.21 ，change $-B I \cdot C I \cdot \sqrt{2}$ to $+B I \cdot C I \cdot \sqrt{2}$ ．Thus，in last display change $\sqrt{2}$ to $-\sqrt{2}$ ．
p． 256 in Solution 6.30 ，the case $P=B$ should be addressed separately to avoid division－ by－zero issues．
p． 258 in Solution 6．36，the comma should be deleted in＂By，Lemma 6．11＂．
p． 259 in Solution 6．36，change $a b-1$ to $a b+1$ and follow through．
p． 262 there is a minus sign missing on fifth display．Carrying through，we actually get $x=h-\frac{b c(a+b+c)}{b^{2}+b c+c^{2}}$ instead，id est we want $x / h=1-\frac{b c}{b^{2}+b c+c^{2}}$ to be real．
p． 264 the footnote calculation appears broken．The correct expression is
$$
\mathcal{N}-\bar{p} \mathcal{D}=-s_{4} \bar{p}^{3}+p^{2} \bar{p}+s_{3} \bar{p}^{2}-s_{2} \bar{p}+s_{1}-2 p
$$
p． 265 in Solution 6．45，the first quantity under consideration should be $\frac{a-b}{c-b} \cdot \frac{c-d}{e-d} \cdot \frac{e-f}{a-f}$ ．
p． 265 in Solution 6．45，the solution proves $|(a-b)(c-e)(d-f)|=|(d-e)(f-b)(a-c)|$ ． It should instead prove $|(b-c)(a-e)(f-d)|=|(c-a)(e-f)(d-b)|$ ，which is the same up to permutation of point labels．
p． 267 in Solution 7.38 （which starts on the previous page），in the last paragraph，one does need to verify that the coefficient of k is nonzero in order to conclude that there is exactly one solution in k ．
p． 268 at the end of Solution 7．42，the end of the display should be $-2 S_{A}+2 b c$ ．

p． 268 Solution 7.44 is completely messed up，including the diagram：it is

 solving a different problem．Here is a corrected solution．In the usual barycentric notation，we claim that the common point is $K=$ $\left(a^{2}-b^{2}+c^{2}: b^{2}-a^{2}+c^{2}:-c^{2}\right)$ ．Let $C_{1}=(u: v: 0)$ ，with $u+v=1$ ．

By power of a point，we observe that $B A_{1}=\frac{u c^{2}}{a}$ ．Therefore，we obtain that

$$
A_{1}=\left(0: a-\frac{u c^{2}}{a}: \frac{u c^{2}}{a}\right)=\left(0: a^{2}-u c^{2}: u c^{2}\right) .
$$

Similarly，$B_{1}=\left(b^{2}-v c^{2}: 0: v c^{2}\right)$ ．Therefore，

$$
C_{2}=\left(u\left(b^{2}-v c^{2}\right): v\left(a^{2}-u c^{2}\right): u v c^{2}\right) .
$$

Now we show that C_{1}, C_{2} ，and K are collinear．Expand

$$
\begin{aligned}
\left|\begin{array}{ccc}
u\left(b^{2}-v c^{2}\right) & v\left(a^{2}-u c^{2}\right) & u v c^{2} \\
u & v & 0 \\
a^{2}-b^{2}+c^{2} & b^{2}-a^{2}+c^{2} & -c^{2}
\end{array}\right|= & u v c^{2}\left|\begin{array}{ccc}
b^{2}-v c^{2} & a^{2}-u c^{2} & u v \\
1 & 1 \\
\frac{a^{2}-b^{2}+c^{2}}{u} & \frac{b^{2}-a^{2}+c^{2}}{v} & 0 \\
-1
\end{array}\right| \\
= & u v c^{2}\left[\left(a^{2}-u c^{2}\right)-\left(b^{2}-v c^{2}\right)\right. \\
& \left.+u\left(b^{2}-a^{2}+c^{2}\right)-v\left(a^{2}-b^{2}+c^{2}\right)\right] \\
= & u v c^{2}\left(b^{2}-a^{2}\right)(u+v-1)=0 .
\end{aligned}
$$

p． 269 in Solution 7．47，delete＂Let ω_{i} be the circle with center O_{i} and radius r_{i}＂．
p． 270 in Solution 7．49，second display，delete＂det＂．
p． 270 in solution $7.52, T$ should be $a u^{-1}+b v^{-1}+c w^{-1}$ ．
p． 271 in solution 7.52 ，the line $P C^{2}=\ldots$ is missing a plus sign after $-a^{2}(v w)^{-1}$ ．
p． 271 in solution 7.52 ，second－to－last display，the expressions actually equal $-\gamma$ ，not γ ．
p． 273 Solution 8．31，change＂an reflection＂to＂a reflection＂．
pp．273－274 Solution 8．31，swap A and C everywhere，including the figure．In addition， Ψ should swap A and B（not fix them）．
p． 274 in Solution 8．31，change＂isogonal with respect to $\angle B A C$＂to＂isogonal with respect to $\triangle B A C$＂．
p． 274 Solution 8．36，change＂nine－point circle＂to＂the nine－point circle＂in third sentence．
p． 274 Solution 8.37 is wrong，it assumes $A B$ passes through the center of ω_{2} ．
p． 276 in Solution 9．46，the concurrence of lines $I P$ and $E F$ with the two tangents t the incircle needs justification as well（in order to apply Lemma 9．40）．It follows from $D E F X$ being harmonic，where X is the second intersection of line $A D$ with the incircle．
p． 276 in Solution 9．47，change $(A, X ; B, C)$ to $(A, X ; C, B)$ ．
p． 277 in Solution 9．50，change $\overline{C G} \cap \overline{B E}$ to $\overline{C G^{\prime}} \cap \overline{B E}$ ．
p． 281 in Solution 10．26，the last line，change $\measuredangle H M N$ to $\measuredangle H N M$ ．
p． 282 in Solution 10.29 ，change（ $P, E ; X, Y$ ）to $(F, E ; X, Y)$ in last paragraph．
p． 282 in Solution 10．30，change＂This solves ．．．$\measuredangle A_{2} C_{2} B_{2}$＂to＂This solves the prob－ lem，because the analogous calculation gives $\measuredangle B C_{3} A_{3}=\measuredangle B_{2} A C$ ，which implies $\measuredangle A_{3} C_{3} B_{3}=\measuredangle A_{3} C_{3} A+\measuredangle A C_{3} B_{3}=\measuredangle A_{3} C_{3} B+\measuredangle A C_{3} B_{3}=\measuredangle C A B_{2}+\measuredangle A_{2} B C=$ $\measuredangle C C_{2} B_{2}+\measuredangle A_{2} C_{2} C=\measuredangle A_{2} C_{2} B_{2}$ ．Similarly，we have $\measuredangle B_{3} A_{3} C_{3}=\measuredangle B_{2} A_{2} C_{2}$ and $\measuredangle C_{3} B_{3} A_{3}=\measuredangle C_{2} B_{2} A_{3}$ ．Hence $A_{3} C_{3} B_{3} \sim A_{2} C_{2} B_{2}$ and we are done＂．
p． 286 in Solution 11．6，change＂power＂to＂radius＂．
p． 288 in Solution 11．9，final sentence of second paragraph，the tangency is to（DCM）， and not（BCM）．
p． 288 in Solution 11．9，last display，change $\frac{K L}{P L}$ to $\frac{P L}{K L}$ ．
p． 289 in Solution 11．11，change＂the angle bisector＂to＂an angle bisector＂and＂the line through O perpendicular to $B C$＂to＂the perpendicular bisector of $B C$＂．
p． 292 in Solution 11．15，change＂$\angle M O A$＂to $\angle M O^{\prime} A$＂．
p． 293 in Solution 11．15，change＂the $O P H^{\prime}$＂to＂$\triangle O P H^{\prime}$＂．
p． 293 in Solution 11．16，what is none other than the BC is not ω_{A}^{*} but ω_{A}^{+}．
p． 294 delete the dotted circle in solution 11．16，it shouldn＇t be there．
p． 295 in Solution 11．17，delete＂（where A_{0} is the tangency point of the incircle on $B C$ ）＂．
p． 296 first line，I meant to write $\triangle A Q L$ and not $(A B L)$ although these are the same conclusion．
p． 296 in Solution 11．18，very very end，change $2 t$ to $\left(b^{2}+c^{2}\right) t$ ．
p． 297 in Solution 11．18，the first display should read $-a^{2} v+b^{2} w+c^{2} v=\left(b^{2}+\right.$ $\left.c^{2}\right) t+(a b c)^{2}-(a b)^{2} S_{B}-a^{2} t=S_{A}\left((a b)^{2}+2 t\right)$ ．The next display should be $X^{\prime}=\left(a^{2} v w: S_{A}\left(c^{2} S_{C}+t\right)\left((a b)^{2}+2 t\right): S_{A}\left(b^{2} S_{B}+t\right)\left((a c)^{2}+2 t\right)\right)$ ．Similarly for Y^{\prime} and Z^{\prime} ．
p． 297 in Solution 11．19，start of last paragraph，change $D B C_{1}$ to $D B_{1} C_{1}$ ．
p． 298 in Solution 11．20，start of solution，define P as the tangency point of ℓ ．
pp．298－299 in Solution 11．20，change $\ell_{A}, \ell_{B}, \ell_{C}$ to $\ell_{a}, \ell_{b}, \ell_{c}$ ，respectively．
p． 300 in Solution 11．21，the definition of points T and H^{\prime} are missing．Point T is the contact point of the A－mixtilinear incircle．Point H^{\prime} is the reflection of H across M^{*} ．Change $I^{*} L^{*} A^{*}$ to $I L^{*} A^{*}$ ．
p． 303 in the description of CGMO，＂Girls＂should be＂Girls＇＂．
p． 303 in the description of IMO，change＂problem＂to＂problems＂．
p． 303 in the description of ELMO，change＂Exceeding＂to＂Exceedingly＂．
p． 305 the link to reference［3］is broken．Fortunately，it＇s on this website！The publication date should be amended to 2012 though．
p． 305 the link to reference［7］is broken．http：／／e．math．hr／afine／planegeo．pdf or https：／／archive．org／details／planegeo has the file．
p． 305 reference［10］，change＂Geogebral＂to＂GeoGebra＂．

[^0]: ${ }^{1}$ I know this sounds idiotic out of context．．．

