Evan's PhD Notebook

https://github.com/vEnhance/evans-phd-notebook/

EVAN CHEN《陳誼廷》

20 April 2024

Contents

ı	Cla	assical	theory	(
1	Prei	Prerequisites						
	1.1	Fourie	er transforms					
		1.1.1	Fourier transform of a periodic function					
		1.1.2	Fourier transform of a real function					
		1.1.3	Applications of Fourier stuff					
	1.2	Mellin	transform					
		1.2.1	Generalized Mellin transform					
		1.2.2	Applications of Mellin	1				
		1.2.3	Mellin transforms for functions not decaying at infinity	1				
	1.3	Dirich	let characters	1				
		1.3.1	Sums involving Dirichlet characters	1				
		1.3.2	The L -function of a Dirichlet character	1				
	1.4	Linear	algebraic groups	1.				
		1.4.1	Reductive groups	1				
		1.4.2	Parabolic and Borel subgroups	1				
		1.4.3	Table	1				
2	Mod	dular fo	orms	1				
-	2.1		alf-plane and the modular group	1				
		2.1.1	The action of $\mathrm{SL}_2(\mathbb{R})$ on the half-plane	1				
		2.1.2	Fuchsian groups	18				
		2.1.3	Cusps	1				
		2.1.4	The classical picture of $\mathrm{SL}_2(\mathbb{Z})$	1				
		2.1.5	Compactification	1				
	2.2							
		2.2.1	Definition on $\Gamma(1)$	$\frac{1}{1}$				
		2.2.2	Definition for a general Fuchsian group	2				
		2.2.3	Growth rate	2				
		2.2.4	Important special case with $\Gamma_0(N)$ and $\Gamma_1(N)$; twisting by nebentypus					
	2.3	Classi	fication of modular forms for $\Gamma(1)$					
		2.3.1	First important example					
		2.3.2	Second important example					
		2.3.3	Main result	2				
	2.4		r-function of a modular form for a congruence group	2				
		2.4.1	Definition	2				
		2.4.2	Completed <i>L</i> -function	2				
	2.5		sson inner product	2				
		2.5.1	Poincaré metric	2				
		2.5.2	The Petersson inner product	2				
		2.5.2	Genus	2				
	2.6		operators for $\Gamma(1)$	2				
	4. 0	2.6.1	Double cosets of $\Gamma(1)$ in $\operatorname{GL}_2^+(\mathbb{Q})$	2				
		2.6.1	The Hecke operator $\dots \dots \dots \dots \dots$	2'				
		4.0.4	The Hooke operator	4				

Ш	Towards adeles	28
3	Adeles 3.1 The adele ring 3.2 Example 3.3 First properties of the adele ring 3.4 Calculus on adeles 3.4.1 Fourier setup for local fields 3.4.2 Poisson summation	29 30 30 30
4	Tate's thesis 4.1 Goals moving forward (road map of the future) 4.2 Motivation 4.3 Local functional equation 4.3.1 Non-Archimedean definition 4.3.2 Archimedean definition 4.3.3 The local functional equation for a test function 4.3.4 The local functional equation 4.4 Global functional equation	32 33 33 34 34 35
5	Adelization 5.1 Derivation of modular forms via representation theory	37
Ш	I Automorphic forms and representations	38
6	Automorphic representations 6.1 Automorphic forms	
7	Whittaker models 7.1 Local uniqueness	41
IV	/ Active work: GGP	43
V	Active work: Orbital	44
8	Orbital integral 8.1 Background 8.1.1 Symmetric space 8.1.2 Orbital integral 8.2 Reparametrization in terms of valuations 8.2.1 Computation of value in indicator function 8.2.2 Reparametrizing the integral in terms of t and m 8.3 Setup	45 45 46 46 47 48
	8.3.1 Simplifying assumptions	

Evan Chen《陳誼廷》	— 20 April 2024
----------------	-----------------

Evan's PhD Notebook

8.4	Descri	ption of the nonzero regions
	8.4.1	The case where $n \leq 0$
	8.4.2	Setup for $n > 0$
	8.4.3	Volume lemma
	8.4.4	The case where $n > 0$, and ℓ is odd
	8.4.5	The case where $n > 0$, ℓ is even, $v(b) = v(d) = 0$
8.5	Evalua	ation of the integral
	8.5.1	Region where $n \leq 0$ for all values of ℓ
	8.5.2	Region where $n > 0$ for odd ℓ
	8.5.3	Completed case when ℓ is odd
	8.5.4	Region where $n > 0$ for even ℓ

I Classical theory

Towards adeles

III

Automorphic forms and representations

IV

Active work: GGP

\mathbf{V}

Active work: Orbital

8 Orbital integral

§8.1 Background

Let F be a finite extension of \mathbb{Q}_p for p > 2 and let E/F be an unramified quadratic field extension. Denote by ϖ a uniformizer of \mathcal{O}_F , such that $\bar{\varpi} = \varpi$, and let v be the associated valuation. Let η be the quadratic character attached to E/F by class field theory, so that $\eta(x) = -1^{v(x)}$.

§8.1.1 Symmetric space

We define the symmetric space

$$S_3(F) := \{ s \in \operatorname{GL}_3(E) \mid s\bar{s} = \operatorname{id} \}.$$

We also pay particular attention to the subspace which have \mathcal{O}_E entries:

$$K_S := S_3(F) \cap \operatorname{GL}_3(\mathcal{O}_E).$$

Lemma 8.1.1 (Cartan decomposition)

For each integer $m \ge 0$ let

$$K_{S,m} := K_S \cdot \begin{bmatrix} 0 & 0 & \varpi^m \\ 0 & 1 & 0 \\ \varpi^{-m} & 0 & 0 \end{bmatrix}.$$

Then we have a decomposition

$$S_3(F) = \coprod_{m \ge 0} K_{S,m}.$$

For $r \geq 0$, define

$$\Omega_r := S_3(F) \cap \varpi^{-m} \operatorname{GL}_3(\mathcal{O}_E).$$

We can re-parametrize the problem according to the following claim.

Claim 8.1.2 —

$$\Omega_r = K_{S,0} \sqcup K_{S,1} \sqcup \cdots \sqcup K_{S,r}$$
.

If this claim is true (still need to check it), then an integral over each Ω_r lets us extract the integrals over $K_{S,m}$.

§8.1.2 Orbital integral

Define

$$H' := \left\{ \begin{bmatrix} t_1 & t_2 \\ \bar{t}_2 & \bar{t}_1 \end{bmatrix} \right\} \cong \operatorname{GL}_2(F).$$

We embed H' into $GL_3(F)$ by $h' \mapsto \begin{bmatrix} h' & 0 \\ 0 & 1 \end{bmatrix}$, which allows H to act on $GL_3(F)$ and hence $S_3(F)$.

Now we can define the orbital integral.

Definition 8.1.3. For brevity let $\eta(h') := \eta(\det h')$ for $h' \in H'$. For $\gamma \in S_3(F)$ and $s \in \mathbb{C}$, we define the orbital integral by

$$O(\gamma, s) := \int_{g \in H'} \mathbf{1}_{\Omega_r}(\bar{g}^{-1}\gamma g) \eta(g) |\det(g)|_F^{-s} dg$$

where

$$dg = \kappa \cdot \frac{dt_1 dt_2}{|t_1 \bar{t}_1 - t_2 \bar{t}_2|_F^2}$$

for the constant $\kappa := (1 - q^{-1})^{-1}(1 - q^{-2})^{-1}$

Indeed, for $h' \in H$ and $\gamma \in S_3(F)$ we have $h'\gamma(\bar{h}')^{-1} \in S_3(F)$ and so the indicator function is filtering based on which part of the Cartan decomposition that $h'\gamma(\bar{h}')^{-1}$ falls in

Evidently $O(\gamma, s)$ only depends on the H'-orbit of γ . So it makes sense to pick a canonical representative for the H'-orbit to compute the orbital integral in terms of. For so-called regular γ , the representatives

$$\gamma(a,b,d) = \begin{bmatrix} a & 0 & 0 \\ b & -\bar{d} & 1 \\ c & 1 - d\bar{d} & d \end{bmatrix} \in S_3(F); \text{ where } c = -a\bar{b} + bd$$

over all $a \in E^1$, $b \in E$, $d \in E$ for which $(1 - d\bar{d})^2 - c\bar{c} \neq 0$, cover all the regular orbits, which are the ones we care about.

For r=0, [Zha12] computes $\frac{\partial}{\partial s}O(\gamma,s)$ at s=0 in terms of a,b,d. Our goal is to compute it for r>0 too.

§8.2 Reparametrization in terms of valuations

§8.2.1 Computation of value in indicator function

We are integrating over $t_1 \in E$ and $t_2 \in E$. Regarding $g \in H'$ as an element of GL_3 as described before, we have

$$g = \begin{bmatrix} t_1 & t_2 & 0 \\ \bar{t}_2 & \bar{t}_1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

We therefore have

$$\bar{g}^{-1} = \begin{bmatrix} \frac{t_1}{t_1 \bar{t}_1 - t_2 \bar{t}_2} & \frac{-\bar{t}_2}{t_1 \bar{t}_1 - t_2 \bar{t}_2} & 0\\ -t_2 & t_1 \bar{t}_1 - t_2 \bar{t}_2 & t_1 \bar{t}_1 - t_2 \bar{t}_2 & 0\\ 0 & 0 & 1 \end{bmatrix}.$$

Hence

$$\bar{g}^{-1}\gamma g = \begin{bmatrix} \frac{t_1}{t_1\bar{t}_1 - t_2\bar{t}_2} & \frac{-\bar{t}_2}{t_1\bar{t}_1 - t_2\bar{t}_2} & 0\\ \frac{-t_2}{t_1\bar{t}_1 - t_2\bar{t}_2} & \frac{\bar{t}_1}{t_1\bar{t}_1 - t_2\bar{t}_2} & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & 0 & 0\\ b & -\bar{d} & 1\\ c & 1 - d\bar{d} & d \end{bmatrix} \begin{bmatrix} t_1 & t_2 & 0\\ \bar{t}_2 & \bar{t}_1 & 0\\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{t_1}{t_1\bar{t}_1 - t_2\bar{t}_2} & \frac{-\bar{t}_2}{t_1\bar{t}_1 - t_2\bar{t}_2} & 0\\ \frac{-t_2}{t_1\bar{t}_1 - t_2\bar{t}_2} & \frac{\bar{t}_1}{t_1\bar{t}_1 - t_2\bar{t}_2} & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} at_1 & at_2 & 0\\ bt_1 - \bar{d}\bar{t}_2 & bt_2 - \bar{d}\bar{t}_1 & 1\\ ct_1 + (1 - d\bar{d})\bar{t}_2 & ct_2 + (1 - d\bar{d})\bar{t}_1 & d \end{bmatrix}$$

$$= \begin{bmatrix} \frac{at_1^2 - bt_1\bar{t}_2 + d\bar{t}_2^2}{t_1\bar{t}_1 - t_2\bar{t}_2} & \frac{at_1t_2 - bt_2\bar{t}_2 + d\bar{t}_1\bar{t}_2}{t_1\bar{t}_1 - t_2\bar{t}_2} & \frac{-\bar{t}_2}{t_1\bar{t}_1 - t_2\bar{t}_2} \\ \frac{-at_1t_2 + bt_1\bar{t}_1 - d\bar{t}_1\bar{t}_2}{t_1\bar{t}_1 - t_2\bar{t}_2} & \frac{-at_2^2 + b\bar{t}_1t_2 - d\bar{t}_1^2}{t_1\bar{t}_1 - t_2\bar{t}_2} & \frac{\bar{t}_1}{t_1\bar{t}_1 - t_2\bar{t}_2} \\ ct_1 + (1 - d\bar{d})\bar{t}_2 & ct_2 + (1 - d\bar{d})\bar{t}_1 & d \end{bmatrix}$$

Let us define

$$t = t_2 \bar{t}_1^{-1} \iff t_2 = t\bar{t}_1.$$

This lets us rewrite everything in terms of the ratio t and $t_1 \in E$:

$$\bar{g}^{-1}\gamma g = \begin{bmatrix} \frac{t_1^2(a-b\bar{t}+\bar{d}\bar{t}^2)}{t_1\bar{t}_1(1-t\bar{t})} & \frac{t_1\bar{t}_1(at-bt\bar{t}+\bar{d}\bar{t})}{t_1\bar{t}_1(1-t\bar{t})} & \frac{t_1\cdot(-\bar{t})}{t_1\bar{t}_1(1-t\bar{t})} \\ \frac{t_1\bar{t}_1(-at+b-\bar{d}\bar{t})}{t_1\bar{t}_1(1-t\bar{t})} & \frac{\bar{t}_1^2(-at^2+bt-\bar{d})}{t_1\bar{t}_1(1-t\bar{t})} & \frac{-\bar{t}_1}{t_1\bar{t}_1(1-t\bar{t})} \\ t_1(c+(1-d\bar{d})\bar{t}) & \bar{t}_1(ct+(1-d\bar{d})) & d \end{bmatrix}$$

This new parametrization is better because t_1 only plays the role of a scale factor on the outside, with "interesting" terms only involving t. To make this further explicit, we write

$$t_1 = \varpi^{-m}\varepsilon$$

for $m \in \mathbb{Z}$ and $\varepsilon \in \mathcal{O}_E^{\times}$. Then we actually have

$$\begin{bmatrix} \bar{\varepsilon} \\ & \varepsilon \\ & 1 \end{bmatrix} \bar{g}^{-1} \gamma g \begin{bmatrix} \varepsilon^{-1} \\ & \bar{\varepsilon}^{-1} \end{bmatrix} = \begin{bmatrix} \frac{a - b\bar{t} + d\bar{t}^2}{1 - t\bar{t}} & \frac{at - bt\bar{t} + d\bar{t}}{1 - t\bar{t}} & \frac{-\varpi^m \bar{t}}{1 - t\bar{t}} \\ \frac{-at + b - d\bar{t}}{1 - t\bar{t}} & \frac{-at^2 + bt - d}{1 - t\bar{t}} & \frac{-\varpi^m}{1 - t\bar{t}} \\ \frac{c + (1 - d\bar{d})\bar{t}}{\varpi^m} & \frac{ct + (1 - d\bar{d})}{\varpi^m} & d \end{bmatrix}$$

For brevity, we will let $\Gamma(\gamma, t, m)$ denote the right-hand matrix. The conjugation by $\begin{bmatrix} \varepsilon^{-1} \\ \bar{\varepsilon}^{-1} \end{bmatrix}$ has no effect on any of the Ω_r , so that we can simply use

$$\mathbf{1}_{\Omega_r}(\bar{g}^{-1}\gamma g) = \mathbf{1}_{\Omega_r}(\Gamma(\gamma, t, m))$$

in the work that follows. By abuse of notation, we abbreviate

$$\mathbf{1}(\gamma, t, m) := \mathbf{1}_{\Omega_r}(\Gamma(\gamma, t, m)).$$

§8.2.2 Reparametrizing the integral in terms of t and m

From now on, following [Zha12] we always fix the notation

$$m = m(t_1) := -v(t_1)$$

 $n = n(t) := v(1 - t\bar{t}).$

We need to rewrite the integral, phrased originally via dg, in terms of the parameters t (hence n), m, and γ . We start by observing that

$$\det q = t_1 \bar{t}_1 - t_2 \bar{t}_2 = t_1 \bar{t}_1 (1 - t\bar{t})$$

which means that

$$v(\det g) = -2m + n$$

ergo

$$|\det g|_F = q^{-v(\det g)} = q^{2m-n}$$

 $\eta(g) = (-1)^{v(\det g)} = (-1)^n.$

Meanwhile, from $t_2 = t\bar{t}_1$ we derive

$$\mathrm{d}t_2 = |t_1|_E \, \mathrm{d}t = q^{2m} \, \mathrm{d}t.$$

Bringing this all into the orbital integral gives

$$O(\gamma, s) = \kappa \int_{t, t_1 \in E} \mathbf{1}(\gamma, t, m) (-1)^n (q^{2m-n})^{s-2} dt_1 \cdot (q^{2m} dt)$$
$$= \kappa \int_{t, t_1 \in E} \mathbf{1}(\gamma, t, m) (-1)^n q^{s(2m-n)} \cdot q^{2n-2m} dt dt_1.$$

§8.3 Setup

§8.3.1 Simplifying assumptions

For the purposes of [Zha12], we will only care about the following case:

Assumption 8.3.1

$$v\left((1-d\bar{d})^2-c\bar{c}\right) \equiv 1 \pmod{2}$$

We will also assume:

Assumption 8.3.2

$$v(d) \ge -r$$
.

This is fine because if this v(d) < -r then the integral will always vanish (because the bottom-right entry of $\Gamma(\gamma, t, m)$ is no-good). Because of this, from (8.3) we then get

Corollary 8.3.3

$$v(b) \ge -r$$
.

§8.3.2 Notations

As we described earlier, our goal is to give an answer in terms of

$$a \in E^1$$
, $b, d \in E$, $r > 0$.

To simplify the notation in what follows, it will be convenient to define several quantities that reappear frequently. From Assumption 8.3.1, we may define

$$\delta \coloneqq v(1 - d\bar{d}) = v(c) \neq -\infty. \tag{8.1}$$

Following [Zha12] we will also define

$$u := \frac{\bar{c}}{1 - d\bar{d}} \in \mathcal{O}_E^{\times} \tag{8.2}$$

so that $\nu(1 - u\bar{u}) \equiv 1 \pmod{2}$ and

$$b = -au - \bar{d}\bar{u}. \tag{8.3}$$

Note that this gives us the following repeatedly used identity

$$b^{2} - 4a\bar{d} = (au - \bar{d}\bar{u})^{2} - 4a\bar{d}(1 - u\bar{u}). \tag{8.4}$$

Finally, define

$$\ell \coloneqq v(b^2 - 4a\overline{d}). \tag{8.5}$$

We will also define one additional parameter useful when ℓ is even:

$$\lambda \coloneqq v(1 - u\bar{u}) \equiv 1 \pmod{2}. \tag{8.6}$$

In the case where ℓ is odd, we get (8.4) implying $\lambda = \ell$ and this definition will never be used — the orbital will be computed as a function of ℓ and δ (and r). However for even ℓ these numbers are never equal and our orbital integral will be stated in terms of ℓ , δ , and λ (and r).

§8.4 Description of the nonzero regions

§8.4.1 The case where $n \leq 0$

Claim 8.4.1 — Whenever n = 0 (this requires $v(t) \ge 0$),

$$\mathbf{1}(\gamma, t, m) = \begin{cases} 1 & \text{if } -r \leq m \leq \delta + r \\ 0 & \text{otherwise.} \end{cases}$$

Proof. We have to consider the nine entries of $\Gamma(\gamma, t, m)$ in tandem.

The upper 2×2 matrix is always in $\omega^{-r}\mathcal{O}_E$, because $v(t) \geq 0$, $v(d) \geq -r$, $v(b) \geq -r$, and v(a) = 0 suffices.

In the right column, since $v(t) \ge 0$ and n = 0, the condition is simply $m \ge -r$.

In the bottom row, we need $v\left(c+(1-d\bar{d})\bar{t}\right)-m\geq -r$ and $v\left(ct+(1-d\bar{d})\right)-m\geq -r$. If v(t)>0 this is equivalent to $m-r\leq \delta$. In the case where v(t)=0 we instead use the observation that

$$\left[c + (1 - d\bar{d})\bar{t}\right] - \bar{t}\left[ct + (1 - d\bar{d})\right] = (1 - t\bar{t})c \tag{8.7}$$

which forces at least one of $ct + (1 - d\bar{d})$ and $c + (1 - d\bar{d})\bar{t}$ to have valuation δ . So the claim follows now.

Claim 8.4.2 — Suppose n = -2k < 0, equivalently, v(t) = -k < 0, for some k.

$$\mathbf{1}(\gamma, t, m) = \begin{cases} 1 & \text{if } -r \leq m + k \leq \delta + r \\ 0 & \text{otherwise.} \end{cases}$$

Proof. The proof is similar to the previous claim, but simpler.

Since k > 0, the fraction $\frac{t^2}{1-tt}$ has positive valuation, so the upper 2×2 of $\Gamma(\gamma, t, m)$ is always in $\varpi^{-r}\mathcal{O}_E$. Turning to the right column, the condition reads exactly $m + k \ge -r$. Finally, in the bottom row, from v(t) > 0 and $v(c) = \delta$ the condition is simply $-k + \delta - m \ge -r$.

§8.4.2 Setup for n > 0

In this situation we evaluate over n > 0 only. In this case t is automatically a unit. Consider the upper 2×2 matrix of $\Gamma(\gamma, t, m)$. Using the identities

$$\frac{a - b\bar{t} + \bar{d}\bar{t}^2}{1 - t\bar{t}} - \bar{t} \cdot \frac{at - bt\bar{t} + \bar{d}\bar{t}}{1 - t\bar{t}} = a - b\bar{t} \in \varpi^{-r}\mathcal{O}_E$$

$$\frac{a - b\bar{t} + \bar{d}\bar{t}^2}{1 - t\bar{t}} + \bar{t} \cdot \frac{-at + b - \bar{d}\bar{t}}{1 - t\bar{t}} = a \in \varpi^{-r}\mathcal{O}_E$$

$$\frac{-at + b - \bar{d}\bar{t}}{1 - t\bar{t}} - \bar{t} \cdot \frac{-at^2 + bt - \bar{d}}{1 - t\bar{t}} = -a + b \in \varpi^{-r}\mathcal{O}_E,$$

it follows that as soon as one entry is in $\varpi^{-r}\mathcal{O}_E$, they all are. Meanwhile, the requirements on the other entries amount to

$$m \ge n - r \tag{8.8}$$

$$v\left(c + (1 - d\bar{d})\bar{t}\right) \ge m - r\tag{8.9}$$

$$v\left(ct + (1 - d\bar{d})\right) \ge m - r\tag{8.10}$$

According to the earlier identity (8.7), if (8.9) is assumed true, then (8.10) is equivalent to

$$\delta + v(1 - t\bar{t}) \ge m - r.$$

Meanwhile, since $v(c + (1 - d\bar{d})\bar{t}) = v(\bar{c} + (1 - d\bar{d})t)$, (8.9) is itself equivalent to

$$v(t+u) + \delta \ge m-r$$

by reading the definition of (8.2).

Finally, we use a tricky substitution

$$(2at - b)^{2} - (b^{2} - 4a\bar{d}) = -4a(-at^{2} + bt - \bar{d})$$

to rewrite $v(-at^2 + bt - \bar{d}) \ge n - r$ as $v\left((2at - b)^2 - (b^2 - 4a\bar{d})\right) \ge n - r$. In summary:

Claim 8.4.3 — Assume t is such that $n = v(1 - t\bar{t}) > 0$. Then $\mathbf{1}(\gamma, t, m) = 1$ if and only if

$$n-r \le m \le n+\delta+r$$

and t lies in the set specified by

$$v\left((2at - b)^2 - (b^2 - 4a\bar{d})\right) \ge n - r$$
$$v(t + u) \ge m - \delta - r.$$

§8.4.3 Volume lemma

The following two lemmas will be useful.

Lemma 8.4.4

Let $\xi \in \mathcal{O}_E^{\times}$ and let $n \geq 1$. Then the volume of the set

$$\{x \in E \mid v(1 - x\bar{x}) = n, \}$$

equals

$$q^{-n}(1-q^{-2}).$$

Lemma 8.4.5 ([Zha12, Lemma 4.4])

Let $\xi \in \mathcal{O}_E^{\times}$ and let $n \geq \rho \geq 1$ be integers. Then the volume of the set

$$\{x \in E \mid v(1 - x\bar{x}) = n, \ v(x - \xi) \ge \rho\}$$

equals

$$\begin{cases} 0 & v(1 - \xi \bar{\xi}) < \rho \\ q^{-(n+\rho)}(1 - q^{-1}) & v(1 - \xi \bar{\xi}) \ge \rho. \end{cases}$$

We will also need to intersect two disks. In an ultrametric space, this is easy to do:

Lemma 8.4.6 (No MasterCard logo in an ultrametric space)

Choose $\xi_1, \xi_2 \in E$ and $\rho_1 \geq \rho_2 \geq 0$. Consider the two disks:

$$D_1 = \{ x \in E \mid v(x - \xi_1) \ge \rho_1 \}$$

$$D_2 = \{ x \in E \mid v(x - \xi_2) \ge \rho_2 \}.$$

Then, if $v(\xi_1 - \xi_2) \ge \rho_2$, we have $D_1 \subseteq D_2$. If not, instead $D_1 \cap D_2 = \emptyset$.

Proof. Because E is an ultrametric space and $Vol(D_1) \leq Vol(D_2)$, we either have $D_1 \subseteq D_2$ or $D_1 \cap D_2 = \emptyset$. The latter condition checks which case we are in by testing if $\xi_1 \in D_2$, since $\xi_1 \in D_1$.

§8.4.4 The case where n > 0, and ℓ is odd

Considering n > 0 and $n - r \le m \le n + \delta + r$ as fixed, we compute the volume of the set of t for which $n = v(1 - t\bar{t})$ and $\mathbf{1}(\gamma, t, m) = 1$.

Supposing ℓ is odd, the condition

$$v\left((2at-b)^2 - (b^2 - 4a\bar{d})\right) \ge n - r$$

is equivalent to simultaneously the two conditions

$$v\left((2at-b)^2\right) \ge n-r \implies v\left(t-\frac{b}{2a}\right) \ge \left\lceil\frac{n-r}{2}\right\rceil$$
 (8.11)

$$v(b^2 - 4a\bar{d}) \ge n - r \implies \ell \ge n - r. \tag{8.12}$$

We also had the requirement

$$v(t+u) \ge m - \delta - r. \tag{8.13}$$

Use Lemma 8.4.6 on (8.11) and (8.13), noting the distance between the two centers is exactly

$$v\left(u+\frac{b}{2a}\right)=v\left(\frac{au-\bar{d}\bar{u}}{2a}\right)=v(au-\bar{d}\bar{u}).$$

Considering that our disks have "radius" $\lceil \frac{n-r}{2} \rceil$ and $m-\delta-r$ respectively, we obtain two possible situations:

• If $m < \lceil \frac{n-r}{2} \rceil + \delta + r$ then Lemma 8.4.5 and Lemma 8.4.6 apply if and only if, respectively,

$$v(4 - b\bar{b}) \ge \left\lceil \frac{n - r}{2} \right\rceil \tag{8.14}$$

$$v(au - \bar{d}\bar{u}) \ge m - \delta - r. \tag{8.15}$$

• If $m \ge \left\lceil \frac{n-r}{2} \right\rceil + \delta + r$ then Lemma 8.4.5 and Lemma 8.4.6 apply if and only if, respectively,

$$v(1 - u\bar{u}) \ge m - \delta - r \tag{8.16}$$

$$v(au - \bar{d}\bar{u}) \ge \left\lceil \frac{n-r}{2} \right\rceil. \tag{8.17}$$

To proceed further, we need to prove a few properties. We list them in turn.

Fact 8.4.7. Whenever ℓ is odd, we must have

$$v(b) = v(d) = 0. (8.18)$$

Proof of (8.18). If $v(d) \neq 0$, then $b = -au - \bar{d}\bar{u}$ is a unit, and hence so is $b^2 - 4a\bar{d}$, causing $\ell = 0$, contradiction. And if d is a unit, $\ell \neq 0$ means v(b) = 0 too.

Next, note that (8.4) together with (8.18) and the assumption ℓ was odd implies

$$\ell = v(1 - u\bar{u}) < 2v(au - \bar{d}\bar{u}). \tag{8.19}$$

This implies that:

Fact 8.4.8. (8.15) and (8.17) are redundant for odd ℓ , i.e. they are automatically true whenever n > 0 and $n - r \le m \le n + \delta + r$.

Proof. Delete the ceilings. We have $\frac{n-r}{2} \leq \frac{\ell}{2} < v(au - \bar{d}\bar{u})$ in both cases. And in (8.14), we have $m - \delta - r \leq \frac{n-r}{2}$ anyway.

Finally, the equation $v(4-b\bar{b})=-4au(1-d\bar{d})-\bar{b}(b^2-4a\bar{d})$ together with (8.18) implies

$$v(4 - b\bar{b}) > \min(\ell, \delta)$$
 with equality if $\ell \neq \delta$. (8.20)

Hence, a priori (8.20) suggests that we have a condition $n \le r + 2\delta$ in addition to $n \le r + \ell$. However, this condition also turns out to be redundant.

Lemma 8.4.9

When ℓ is odd we always have $\ell < 2\delta$.

Proof. To be written up.

Putting all of this together, we find that the valid pairs (n, m) come in two cases.

¶ First case The first case is

$$1 \le n \le \ell + r,$$

$$n - r \le m \le \left\lceil \frac{n - r}{2} \right\rceil + \delta + r - 1$$
(8.21)

where each (m, n) gives a volume contribution of

$$\begin{cases} q^{-n-\left\lceil\frac{n-r}{2}\right\rceil}\left(1-q^{-1}\right) & \text{if } n>r\\ q^{-n}\left(1-q^{-2}\right) & \text{if } n\leq r. \end{cases}$$

¶ Second case The second case is

$$1 \le n \le \ell + r,$$

$$\max\left(n - r, \left\lceil \frac{n - r}{2} \right\rceil + \delta + r\right) \le m \le \min(n, \ell) + \delta + r.$$
(8.22)

where each (m, n) gives a volume contribution of

$$\begin{cases} q^{-n-(m-\delta-r)} \left(1-q^{-1}\right) & \text{if } m > \delta+r \\ q^{-n} \left(1-q^{-2}\right) & \text{if } m \leq \delta+r. \end{cases}$$

Notice that $m \leq \delta + r$ could only occur when $n \leq r$.

§8.4.5 The case where n > 0, ℓ is even, v(b) = v(d) = 0

As before we consider n > 0 and $n - r \le m \le n + \delta + r$ as fixed, and seek to compute the volume of the set of t for which $n = v(1 - t\bar{t})$ and $\mathbf{1}(\gamma, t, m) = 0$.

Suppose ℓ is even. Then the left-hand side of (8.4) is a square, which we denote τ^2 . In this case, we obtain

$$2v(\tau) = \ell = 2v(au - \bar{d}\bar{u}) > \lambda := v(1 - u\bar{u}).$$

Then the condition that

$$v\left((2at - b)^2 - \underbrace{(b^2 - 4a\bar{d})}_{=\tau^2}\right) \ge n - r$$

falls into three disjoint parts:

- Both $v\left((2at-b)^2\right) \ge n-r$ and $\ell=v(\tau^2) \ge n-r$ hold, as in the ℓ odd case.
- We have $\ell = v(\tau^2) < n-r$ (hence $v\left((2at-b)^2\right) < n-r$ too) but

$$v(2at - b \mp \tau) > (n - r) - \ell/2 > 0$$

which in particular implies $v(2at - b \pm \tau) = \ell/2$. This is two parts, corresponding to the choice of \pm .

We analyze the second case since the first case is the same as before (as we are assuming (8.18) in this section; it does not follow for ℓ even). The constrains on t become the two circles

$$v\left(t - \frac{b \pm \tau}{2a}\right) \ge n - \ell/2 - r \tag{8.23}$$

$$v(t+u) \ge m - \delta - r. \tag{8.24}$$

Note that

$$1 - \frac{b \pm \tau}{2a} \cdot \frac{\bar{b} \pm \bar{\tau}}{2\bar{a}} = \frac{4 - \mathcal{N}(b \pm \tau)}{4}$$

The distance between the two circles has valuation

$$v\left(u + \frac{b \pm \tau}{2}\right) = v(au - \bar{d}\bar{u} \pm \tau).$$

Since $(au - \bar{d}\bar{u})^2 - \tau^2 = 4a\bar{d}(1 - u\bar{u})$, we agree now to fix the choice of the square root of τ such that

$$v(au - \bar{d}\bar{u} + \tau) = \lambda - v(\tau)$$
 and $v(au - \bar{d}\bar{u} - \tau) = v(\tau)$. (8.25)

From v(b) = v(d) = 0 and (8.4), we have

$$\ell = 2v(\tau) = 2v(au - \bar{d}\bar{u}) < \lambda.$$

When v(b) = v(d) = 0 we also automatically have $\delta, \ell \geq 0$

This lets us invoke [Zha12, Lemma 4.7] to evaluate $v(4 - N(b \pm \tau))$: we have

$$\lambda + \delta - \ell = v \left(4 - N(b + \tau) \right)$$
$$\delta = v \left(4 - N(b - \tau) \right).$$

So we obtain $2 \cdot 2 = 4$ total cases.

¶ Case 1⁺. Suppose $m < n - \frac{\ell}{2} + \delta$, and we choose $\frac{b+\tau}{2a}$. Then the contribution is nonempty if and only if

$$\lambda + \delta - \ell = v(4 - N(b + \tau)) \ge n - \frac{\ell}{2} - r$$
$$\lambda - \ell/2 = v(au - \bar{d}\bar{u} + \tau) \ge m - \delta - r.$$

Compiling all seven constraints gives that the valid pairs (m,n) are those for which

$$\max(1, \ell + r + 1) \le n \le -\frac{\ell}{2} + \delta + r + \lambda,$$

$$n - r \le m \le \min\left(n + \delta + r, n - \frac{\ell}{2} + \delta - 1, \lambda - \frac{\ell}{2} + \delta + r\right)$$

However, $n + \delta + r \ge n - \frac{\ell}{2} + r$ is clear. So this equation can be whittled down to

$$\max(1, \ell + r + 1) \le n \le -\frac{\ell}{2} + \delta + r + \lambda,$$

$$n - r \le m \le \min\left(n - \frac{\ell}{2} + \delta - 1, \lambda - \frac{\ell}{2} + \delta + r\right).$$
(8.26)

Each (m, n) gives a volume contribution of

$$q^{-n-(n-\ell/2-r)} (1-q^{-1}).$$

¶ Case 1⁻. Suppose $m < n - \frac{\ell}{2} + \delta$, and we choose $\frac{b-\tau}{2a}$. Then the disks have nonempty intersection whenever

$$\delta = v(4 - N(b - \tau)) \ge n - \frac{\ell}{2} - r$$
$$\ell/2 = v(au - \bar{d}\bar{u} - \tau) \ge m - \delta - r.$$

Compiling all seven constraints gives that the valid pairs (m,n) are those for which

$$\max(1, \ell + r + 1) \le n \le \frac{\ell}{2} + \delta + r,$$

$$n - r \le m \le \min\left(n - \frac{\ell}{2} + \delta - 1, \frac{\ell}{2} + \delta + r, n + \delta + r\right)$$

However, $n-\frac{\ell}{2}+\delta-1\geq\frac{\ell}{2}+\delta+r$ hold automatically once $n\geq\ell+r+1$, and $n+\delta+r\geq n-\frac{\ell}{2}+\delta-1$ is true for $\ell\geq 0$. So we can simplify this to

$$\max(1, \ell + r + 1) \le n \le \frac{\ell}{2} + \delta + r,$$

$$n - r \le m \le \frac{\ell}{2} + \delta + r.$$
(8.27)

As in the previous case, (m, n) gives a volume contribution of

$$q^{-n-(n-\ell/2-r)} (1-q^{-1})$$
.

¶ Case 2^+ . Suppose $m \ge n - \frac{\ell}{2} + \delta$, and we choose $\frac{b+\tau}{2a}$. Then the contribution is nonempty if and only if

$$\lambda \geq m - \delta - r$$

$$\lambda - \ell/2 = v(au - \bar{d}\bar{u} + \tau) \geq n - \frac{\ell}{2} - r.$$

Rearranging gives that the valid pairs (m, n) are those for which

$$\max(1, \ell + r + 1) \le n \le \lambda + r$$

$$\max\left(n - r, n - \frac{\ell}{2} + \delta\right) \le m \le \min(n, \lambda) + r + \delta.$$
(8.28)

Here, each (m, n) gives a volume contribution of

$$q^{-n-(m-\delta-r)}\left(1-q^{-1}\right).$$

¶ Case 2⁻. Suppose $m \ge n - \frac{\ell}{2} + \delta$, and we choose $\frac{b+\tau}{2a}$. Then the disks have nonempty intersection whenever

$$\lambda \ge m - \delta - r$$

$$\ell/2 = v(au - \bar{d}\bar{u} - \tau) \ge n - \frac{\ell}{2} - r.$$

The latter inequality contradicts the assumption that $n > \ell + r$, so this case can never occur.

§8.5 Evaluation of the integral

§8.5.1 Region where $n \leq 0$ for all values of ℓ

Proposition 8.5.1

The contribution to the integral $O(\gamma, s)$ over $n \leq 0$ is exactly

$$I_{n \le 0} := q^{2(\delta+r)s} \sum_{j=0}^{\delta+2r} q^{-2js} = q^{-2rs} + \dots + q^{2(\delta+r)s}.$$

Proof. For n = 0 we get a contribution of

$$\kappa \int_{t,t_1 \in E} \mathbf{1}(n=0) \mathbf{1}(\gamma, t, m) q^{2s \cdot m} q^{-2m} dt dt_1$$

$$= \kappa \operatorname{Vol}(t: n=0) \sum_{m=-r}^{\delta+r} \operatorname{Vol}(t_1: -v(t_1) = m) q^{2m(s-1)}$$

$$= \kappa \left(1 - \frac{q+1}{q^2}\right) \sum_{m=-r}^{\delta+r} \left(q^{2m} \left(1 - q^{-2}\right)\right) q^{2m(s-1)}$$

$$= \kappa \left(1 - \frac{q+1}{q^2}\right) \left(1 - q^{-2}\right) \sum_{m=-r}^{\delta+r} q^{2ms}.$$

For the region where v(t) = -k < 0, for each individual k > 0,

$$\kappa \int_{t,t_1 \in E} \mathbf{1}(v(t) = -k) \mathbf{1}(\gamma, t, m) q^{s(2m-n)} q^{2n-2m} dt dt_1$$

$$= \kappa \operatorname{Vol}(t : v(t) = -k) \sum_{m=-r-k}^{\delta+r-k} \operatorname{Vol}(t_1 : -v(t_1) = m) q^{s(2m+2k)-4k-2m}$$

$$= \kappa q^{2k} \left(1 - q^{-2}\right) \sum_{m=-r-k}^{\delta+r-k} \left(q^{2m} \left(1 - q^{-2}\right)\right) q^{s(2m+2k)-4k-2m}$$

$$= \kappa q^{-2k} \left(1 - q^{-2}\right)^2 \sum_{m=-r-k}^{\delta+r-k} q^{2(m+k)s}$$

$$= \kappa q^{-2k} \left(1 - q^{-2}\right)^2 \sum_{m=-r-k}^{\delta+r} q^{2is}.$$

Since $\sum_{k>0} q^{-2k} = \frac{q^{-2}}{1-q^{-2}}$, we find that the total contribution across both the n=0 case and the k>0 case is

$$\left(\left(1 - \frac{q+1}{q^2} \right) \left(1 - q^{-2} \right) + q^{-2} (1 - q^{-2}) \right) \kappa \sum_{i=-r}^{\delta+r} q^{2is}$$

$$= \left(1 - q^{-1} \right) \left(1 - q^{-2} \right) \kappa \sum_{i=-r}^{\delta+r} q^{2is}$$

$$= \sum_{i=-r}^{\delta+r} q^{2is}.$$

This equals the claimed sum above. (We write it over $0 \le j \le \delta + 2r$ for consistency with a later part.)

§8.5.2 Region where n > 0 for odd ℓ

Again using $Vol(t_1: -v(t_1) = m) = q^{2m}(1-q^{-2})$, summing all the cases gives

$$\begin{split} I_{n>0}^{\text{odd}} &:= \kappa \int_{t,t_1 \in E} \mathbf{1}(n>0) \mathbf{1}(\gamma,t,m) \\ &= \kappa \sum_{n=1}^r \sum_{m=n-r}^{\left\lceil \frac{n-r}{2} \right\rceil + \delta + r - 1} q^{-n} \left(1 - q^{-2} \right) \cdot \left((-1)^n q^{s(2m-n)} q^{2n-2m} \right) \left(q^{2m} (1 - q^{-2}) \right) \\ &+ \kappa \sum_{n=r+1}^{\ell+r} \sum_{m=n-r}^{\left\lceil \frac{n-r}{2} \right\rceil + \delta + r - 1} q^{-n - \left\lceil \frac{n-r}{2} \right\rceil} \left(1 - q^{-1} \right) \cdot \left((-1)^n q^{s(2m-n)} q^{2n-2m} \right) \left(q^{2m} (1 - q^{-2}) \right) \\ &+ \kappa \sum_{n=1}^r \sum_{m=\max(n-r, \left\lceil \frac{n-r}{2} \right\rceil + \delta + r)}^{\delta + r} q^{-n} \left(1 - q^{-2} \right) \cdot \left((-1)^n q^{s(2m-n)} q^{2n-2m} \right) \left(q^{2m} (1 - q^{-2}) \right) \end{split}$$

$$+ \kappa \sum_{n=1}^{\ell+r} \sum_{m=\max(n-r, \lceil \frac{n-r}{2} \rceil + \delta + r, \delta + r + 1)}^{\min(n,\ell) + \delta + r} q^{-n - (m - \delta - r)} (1 - q^{-1})$$

$$\cdot \left((-1)^n q^{s(2m-n)} q^{2n-2m} \right) \left(q^{2m} (1 - q^{-2}) \right)$$

$$= \sum_{n=1}^r \sum_{m=n-r}^{\lceil \frac{n-r}{2} \rceil + \delta + r - 1} q^n (1 + q^{-1}) \cdot (-1)^n q^{s(2m-n)}$$

$$+ \sum_{n=r+1}^{\ell+r} \sum_{m=n-r}^{\lceil \frac{n-r}{2} \rceil + \delta + r - 1} q^{\lfloor \frac{n+r}{2} \rfloor} \cdot (-1)^n q^{s(2m-n)}$$

$$+ \sum_{n=1}^r \sum_{m=\max(n-r, \lceil \frac{n-r}{2} \rceil + \delta + r)}^{\delta + r} q^n (1 + q^{-1}) \cdot (-1)^n q^{s(2m-n)}$$

$$+ \sum_{n=1}^{\ell+r} \sum_{m=\max(n-r, \lceil \frac{n-r}{2} \rceil + \delta + r, \delta + r + 1)}^{\min(n,\ell) + \delta + r} q^{n - (m - \delta - r)} \cdot (-1)^n q^{s(2m-n)}.$$

To simplify the expressions, we replace the summation variable m with

$$i := (n + \delta + r) - m > 0.$$

In that case,

$$2m - n = 2(\delta + n + r - j) - n = n + 2\delta + 2r - 2j$$

Then the expression rewrites as

$$I_{n>0}^{\text{odd}} = \sum_{n=1}^{r} \sum_{j=\left\lfloor \frac{n+r}{2} \right\rfloor+1}^{\delta+2r} q^{n} \left(1+q^{-1}\right) \cdot (-1)^{n} q^{s(n+2\delta+2r-2j)}$$

$$+ \sum_{n=r+1}^{\ell+r} \sum_{j=\left\lfloor \frac{n+r}{2} \right\rfloor+1}^{\delta+2r} q^{\left\lfloor \frac{n+r}{2} \right\rfloor} \cdot (-1)^{n} q^{s(n+2\delta+2r-2j)}$$

$$+\sum_{n=1}^{r}\sum_{j=n}^{\min\left(\delta+2r,\left\lfloor\frac{n+r}{2}\right\rfloor\right)}q^{n}\left(1+q^{-1}\right)\cdot(-1)^{n}q^{s(n+2\delta+2r-2j)}$$

$$+\sum_{n=1}^{\ell+r}\sum_{j=\max\left(0,n-\ell\right)}^{\min\left(\delta+2r,\left\lfloor\frac{n+r}{2}\right\rfloor,n-1\right)}q^{j}\cdot(-1)^{n}q^{s(n+2\delta+2r-2j)}.$$

We interchange the order of summation so that it is first over j and then n. There are four double sums to interchange.

• The first double sum runs from $j = \left\lfloor \frac{r+1}{2} \right\rfloor + 1$ to $j = \delta + 2r$. In addition to $1 \le n \le r$, we need $\left\lfloor \frac{n+r}{2} \right\rfloor + 1 \le j$, which solves to $\frac{n+r}{2} \le j - \frac{1}{2}$ or $n \le 2j - 1 - r$. Thus the condition on n is

$$1 \le n \le \min(2j - 1 - r, r).$$

• The second double sum runs from j = r + 1 to $\delta + 2r$. We also need $r + 1 \le n \le \ell + r$ and $n \le 2j - 1 - r$. Hence, the desired condition on n is

$$r+1 \le n \le \min(2j-1-r,\ell+r).$$

• The third double runs from j=1 to j=r. Meanwhile, the values of n need to satisfy $1 \le n \le r$, $n \le j$ and $j \le \left\lfloor \frac{n+r}{2} \right\rfloor \implies n \ge 2j-r$, consequently we just obtain

$$\max(1, 2j - r) \le n \le j.$$

• The fourth double sum runs j = 0 to

$$j = \min\left(\delta + 2r, \left\lfloor \frac{\ell}{2} \right\rfloor + r, \ell + r - 1\right) = \left\lfloor \frac{\ell}{2} \right\rfloor + r$$

again because of Lemma 8.4.9. Meanwhile, we require $1 \le n \le \ell + r$, $j \ge n - \ell$, $j \le n - 1$, as well as $j \le \left\lfloor \frac{n+r}{2} \right\rfloor \iff n \ge 2j - r$. Putting these four conditions together gives

$$\max(j+1,2j-r) \le n \le \ell + \min(j,r).$$

Hence we get

$$I_{n>0}^{\text{odd}} = \sum_{j=\left\lfloor \frac{r+1}{2} \right\rfloor+1}^{\delta+2r} \sum_{n=1}^{\min(2j-1-r,r)} q^n \left(1+q^{-1}\right) \cdot (-1)^n q^{s(n+2\delta+2r-2j)}$$

$$+ \sum_{j=r+1}^{\delta+2r} \sum_{n=r+1}^{\min(2j-1-r,\ell+r)} q^{\left\lfloor \frac{n+r}{2} \right\rfloor} \cdot (-1)^n q^{s(n+2\delta+2r-2j)}$$

$$+ \sum_{j=1}^r \sum_{n=\max(1,2j-r)}^j q^n \left(1+q^{-1}\right) \cdot (-1)^n q^{s(n+2\delta+2r-2j)}$$

$$+ \sum_{j=0}^{\left\lfloor \frac{\ell}{2} \right\rfloor+r} \sum_{n=\max(j+1,2j-r)}^{\ell+\min(j,r)} q^j \cdot (-1)^n q^{s(n+2\delta+2r-2j)}.$$

At this point, we can unify the sum over j by noting that for j outside of the summation range, the inner sum is empty anyway. Specifically, note that:

- In the first and second double sum, the inner sum over n is empty anyway when j < r.
- In the third double sum, adding j = 0 does not introduce new terms. Moreover, when j > r the inner sum over n is also empty anyway.
- In the fourth double sum, if $j > \lfloor \frac{\ell}{2} \rfloor + r$, the inner double sum vanishes since $2j r > \ell + \min(j, r)$ in that case.

So we can unify all four double sums to run over $0 \le j \le \delta + 2r$, simplifying the expression to just

$$\begin{split} I_{n>0}^{\text{odd}} &= q^{2(\delta+r)s} \sum_{j=0}^{\delta+2r} \left(\sum_{n=1}^{\min(2j-1-r,r)} q^n \left(1+q^{-1}\right) \cdot (-1)^n q^{s(n-2j)} \right. \\ &+ \sum_{n=r+1}^{\min(2j-1-r,\ell+r)} q^{\left\lfloor \frac{n+r}{2} \right\rfloor} \cdot (-1)^n q^{s(n-2j)} \\ &+ \sum_{n=\max(1,2j-r)}^{j} q^n \left(1+q^{-1}\right) \cdot (-1)^n q^{s(n-2j)} \\ &+ \sum_{n=\max(j+1,2j-r)}^{\ell+\min(j,r)} q^j \cdot (-1)^n q^{s(n-2j)} \right). \end{split}$$

§8.5.3 Completed case when ℓ is odd

Combining the previous two results gives

$$I_{n \le 0} + I_{n > 0}^{\text{odd}} = q^{2(\delta + r)s} \sum_{j=0}^{\delta + 2r} \left(q^{-2js} + \sum_{n=1}^{\min(2j - 1 - r, r)} q^n \left(1 + q^{-1} \right) \cdot (-1)^n q^{s(n - 2j)} \right)$$

$$+ \sum_{n=r+1}^{\min(2j - 1 - r, \ell + r)} q^{\left\lfloor \frac{n + r}{2} \right\rfloor} \cdot (-1)^n q^{s(n - 2j)}$$

$$+ \sum_{n=\max(1, 2j - r)}^{j} q^n \left(1 + q^{-1} \right) \cdot (-1)^n q^{s(n - 2j)}$$

$$+ \sum_{n=\max(j+1, 2j - r)}^{\ell + \min(j, r)} q^j \cdot (-1)^n q^{s(n - 2j)} \right).$$

§8.5.4 Region where n > 0 for even ℓ

References

[Zha12] Wei Zhang. On arithmetic fundamental lemmas. In: *Invent. Math.*, 188:1 (2012), pp. 197–252. ISSN: 0020-9910,1432-1297. DOI: https://doi.org/10.1007/s00222-011-0348-1 (cited pp. 46-49, 51, 54)