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8 Orbital integral

§8.1 Background

Let F be a finite extension of Q, for p > 2 and let E/F be an unramified quadratic
field extension. Denote by w a uniformizer of Op, such that @ = w, and let v be the
associated valuation. Let n be the quadratic character attached to E/F by class field
theory, so that n(z) = —1°(®),

§8.1.1 Symmetric space

We define the symmetric space
S3(F) :={s € GL3(E) | ss =id}.
We also pay particular attention to the subspace which have O entries:

KS = Sg(F) N GLg(OE)

~
Lemma 8.1.1 (Cartan decomposition)
For each integer m > 0 let
0 0 =™
Ksm=Ks-| 0 1 0
w ™ 0 0
Then we have a decomposition
S3(F) = [[ Ksm-
m>0
. J

For r > 0, define
Qr = Sg(F) Nw ™ GL3(OE)

We can re-parametrize the problem according to the following claim.

Claim 8.1.2 —
Q, = KS,O L KS,I - K57,~.

If this claim is true (still need to check it), then an integral over each €, lets us extract
the integrals over Kg .

§8.1.2 Orbital integral
Define

H' = {[g i_ﬂ } >~ GLy(F).
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We embed H' into GL3(F) by h/ + [ 9], which allows H to act on GL3(F) and hence
S3(F).

Now we can define the orbital integral.

Definition 8.1.3. For brevity let n(h') := n(deth’) for b’ € H'. For v € S3(F) and
s € C, we define the orbital integral by

0= [ 10, 10)n(0) det(o)|7* do

where
dt1 dto
K- T, -9
|t1t1 — tota|%

for the constant s = (1 — ¢~ 1)~}(1 — ¢~ %)~ L.

Indeed, for h' € H and v € S3(F) we have h/y(h/)~! € S3(F) and so the indicator
function is filtering based on which part of the Cartan decomposition that h/y(h')~! falls
in.

Evidently O(~,s) only depends on the H’-orbit of 7. So it makes sense to pick a
canonical representative for the H’-orbit to compute the orbital integral in terms of. For
so-called regular -, the representatives

a 0 0
y(a,byd) = b —d 1| € S3(F); where c= —ab+ bd
c 1—dd d

over all a € E', b€ E, d € E for which (1 — dd)? — c¢ # 0, cover all the regular orbits,
which are the ones we care about.

For r = 0, [Zhal2] computes %0(7, s) at s = 0 in terms of a, b, d. Our goal is to
compute it for r > 0 too.

§8.2 Reparametrization in terms of valuations

§8.2.1 Computation of value in indicator function

We are integrating over t; € E and t2 € E. Regarding g € H' as an element of GL3 as
described before, we have

t1 ta O
g=|ta t1 0
0 0 1
We therefore have _
t —1
tlflitzfz tlflfi2£2
——1 — —12 i1
9 t1t1—toto t1t1—toto
Hence
t —i. 1 r
1 t1f1*1t252 t1f1f§252 0 a 0_ 0 él t} 0
g 79 = t1f17§2t72 t1{1it2£2 0 7d — 1 t2 tl 0
1| le 1—dd d] |o 1
[t —t. 1 r
t1t_1—zt252 t1f1£—i2f2 0 aty _ aty _ 0
= t1t_1—§2t_2 t1f1—1t252 0 bt1 — dtgi - bty — dt17 - 1
1 _Ctl + (1 — dd)tQ cto + (1 — dd)tl d
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at? — btyty + dt3 atits — btaty + diyts ~ty ]
tlt_l — tgt_g tlt_l — tQt_Q tlfl — tgfg
—atity + btlfl — Jt_lt_z —at% + erth — dl?% 1?1
tlfl — tQLTQ tlgl — tgfz tlfl — t2£2
cty + (1 — dd)to cty + (1 — dd)ty d |
Let us define
t=tol; ! = to=th.
This lets us rewrite everything in terms of the ratio t and ¢; € F:
[ t2(a— bt +df?)  tit(at —btE+df)  ty-(—1) ]
t1t1(1 — tt) t1t1(1 — tt) t1t1 (1 — tt)
g_l’yg = tlt_l(—at +b— JE) f%(—af? + bt — CZ) —7?1
t1t1(1 — tt) t1t1(1 — ¢t) t1t1(1 — tt)
L tl(C + (1 — dJ)ﬂ fl(Ct + (1 — d(i)) d i

This new parametrization is better because ¢ only plays the role of a scale factor on the
outside, with “interesting” terms only involving ¢. To make this further explicit, we write

w Me
for m € Z and € € O}. Then we actually have
[a— bt +dt? at—Dbtt+df —w™i]
= -1 1—tt 1—tt 1—tt
_ I A _ g _—-m
- 7 g =1 at+b - dt at”® + bt_ d o™
1 1 1—t 1t 1—t
c+ (1—dd)t ct+(1—dd)
L o™ o™ d i

5

t1 -m

For brevity, we will let I'(v,¢,m) denote the right-hand matrix. The conjugation by
-

-1 } has no effect on any of the €2,., so that we can simply use
1

1o, (§_17g) =1q, (F('% t, m))

in the work that follows. By abuse of notation, we abbreviate

1(77 t, m) = 1q, (F(’Y’ t m))

§8.2.2 Reparametrizing the integral in terms of ¢t and m

From now on, following [Zha12] we always fix the notation

m=m(t;) = —v(t1)
n=n(t) =ov(l—tt).

We need to rewrite the integral, phrased originally via dg, in terms of the parameters ¢
(hence n), m, and . We start by observing that

which means that

detg = tlfl — tgfg = tlfl(l — tt_)

v(det g) =

—2m+n
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ergo
(det g = g~*(eb0) = g2m—n
n(g) = (1)) = ().
Meanwhile, from ¢y = tt; we derive
dty = [t1| 5 dt = ¢*™ dt.
Bringing this all into the orbital integral gives

/ ’7,t m ( 1)n (q2m—n)5_2 dtl . (qu dt)
tt1€el

/-e/ 1(7, ¢, m)(=1)"g*?m) . 2n=2m gt d¢, .
tt1€R

§8.3 Setup

§8.3.1 Simplifying assumptions

For the purposes of [Zhal2|, we will only care about the following case:

Assumption 8.3.1

v((1- dd)> —ce) =1 (mod 2)

We will also assume:

Assumption 8.3.2
v(d) > —r.

This is fine because if this v(d) < —r then the integral will always vanish (because
the bottom-right entry of I'(vy,¢,m) is no-good). Because of this, from (8.3) we then
get

Corollary 8.3.3
v(b) > —r.

§8.3.2 Notations

As we described earlier, our goal is to give an answer in terms of
a€ Fl, b,d € E, r>0.

To simplify the notation in what follows, it will be convenient to define several quantities
that reappear frequently. From Assumption 8.3.1, we may define

§ :=v(1l —dd) = v(c) # —o0. (8.1)
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Following [Zha12] we will also define

u = %M € 0% (8.2)
so that v(1 —ua) =1 (mod 2) and
b= —au — di. (8.3)
Note that this gives us the following repeatedly used identity
v’ — dad = (au — du)* — 4ad(1 — ui). (8.4)
Finally, define
¢ == v(b* — 4ad). (8.5)

We will also define one additional parameter useful when ¢ is even:
A=v(l—wuz)=1 (mod 2). (8.6)

In the case where ¢ is odd, we get (8.4) implying A = ¢ and this definition will never be
used — the orbital will be computed as a function of ¢ and ¢ (and r). However for even
¢ these numbers are never equal and our orbital integral will be stated in terms of £, 9,
and A (and r).

§8.4 Description of the nonzero regions
§8.4.1 The case where n <0
Claim 8.4.1 — Whenever n = 0 (this requires v(¢) > 0),

1 if —r<m<i+r

0 otherwise.

1(v,t,m) = {

Proof. We have to consider the nine entries of I'(,¢,m) in tandem.

The upper 2 x 2 matrix is always in w™"Op, because v(t) > 0, v(d) > —r, v(b) > —r,
and v(a) = 0 suffices.

In the right column, since v(t) > 0 and n = 0, the condition is simply m > —r.

In the bottom row, we need v (¢ + (1 — dd)t) —m > —r and v (ct + (1 — dd)) —m > —r.
If v(¢) > 0 this is equivalent to m — r < §. In the case where v(t) = 0 we instead use the
observation that

[c+ (1 —dd)t] =t [ct + (1 —dd)] = (1 - tt)c (8.7)
which forces at least one of ct + (1 — dd) and ¢+ (1 — dd)t to have valuation . So the
claim follows now. O

Claim 8.4.2 — Suppose n = —2k < 0, equivalently, v(t) = —k < 0, for some k.

1 if —r<m+k<d+r

0 otherwise.

1(~,t,m) = {
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Proof. The proof is similar to the previous claim, but simpler.

Since k > 0, the fraction lthtt— has positive valuation, so the upper 2 x 2 of I'(v, t,m) is
always in w™"Og. Turning to the right column, the condition reads exactly m + k >
—r. Finally, in the bottom row, from v(¢) > 0 and v(c¢) = § the condition is simply

—k+6—m>—r. O

§8.4.2 Setup for n >0

In this situation we evaluate over n > 0 only. In this case t is automatically a unit.
Consider the upper 2 x 2 matrix of I'(v,¢,m). Using the identities

—bt+dt? _ at—btt+dt _
azbttalt pat—biEd o re oo
11—t 11—t
a—bf—i—cjp_l__ —at+b—dt R
1— 1—¢ 5% VB
—at+b—dt - —at’4+bt—d
_ % g . itbew O
11 11 atdew Cp,

it follows that as soon as one entry is in w™"Op, they all are. Meanwhile, the requirements
on the other entries amount to

m>n-—r (8.8)
v(c+ (1 —ddt)>m—r .
v(ct+(1—dd)>m-—r (8.10)

According to the earlier identity (8.7), if (8.9) is assumed true, then (8.10) is equivalent
to
d+v(l—tt) >m—r.

Meanwhile, since v(c+ (1 —dd)t) = v(¢ + (1 — dd)t), (8.9) is itself equivalent to
v(t+u)+o>m—r

by reading the definition of (8.2).
Finally, we use a tricky substitution

(2at — b)* — (b* — 4ad) = —4a(—at?® + bt — d)

to rewrite v(—at? + bt —d) > n —r as v ((2at — b)* — (b* — 4ad)) > n —r.
In summary:

Claim 8.4.3 — Assume ¢ is such that n = v(1 —¢t) > 0. Then 1(v,¢,m) = 1 if and
only if
n—r<m<n—+di+r

and t lies in the set specified by

v ((2at — b)* — (b2—4aJ)) >n—r
vit+u)>m—46—r.
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§8.4.3 Volume lemma

The following two lemmas will be useful.

4 N
Lemma 8.4.4
Let £ € O and let n > 1. Then the volume of the set
{reE|v(l—zZ)=nmn,}
equals
¢ "(1-q7?).
. J
4 N\
Lemma 8.4.5 ([Zhal2, Lemma 4.4])
Let £ € O and let n > p > 1 be integers. Then the volume of the set
{z € B|v(l—13) =n, o(z—€) > p}
equals
0 o(l—¢€) <p
¢MP1—g7") v(1-88) 2 p.
. J

We will also need to intersect two disks. In an ultrametric space, this is easy to
do:

\
Lemma 8.4.6 (No MasterCard logo in an ultrametric space)
Choose £1,&2 € E and p; > pa > 0. Consider the two disks:
D1:{$EE|U($*51)Z,01}
Dy ={z € E|v(z —&) = pa2}.
Then, if v(& — &2) > p2, we have Dy C Ds. If not, instead D1 N Dy = &.
- J

Proof. Because E is an ultrametric space and Vol(D;) < Vol(D3y), we either have
Dy C Dy or D1 N Dy = @. The latter condition checks which case we are in by testing if
& € Do, since &1 € D;. O
§8.4.4 The case where n > 0, and / is odd

Considering n > 0and n —r < m <n+4 9 + r as fixed, we compute the volume of the
set of ¢ for which n = v(1 — tt) and 1(v,¢,m) = 1.
Supposing ¢ is odd, the condition

v ((2at — b)? — (v — dad)) >n—r

is equivalent to simultaneously the two conditions

v((2at —b)?) >n—r — v<t—2ba) > [n;ﬂ (8.11)
v(b® —dad) >n—r = £>n—71. (8.12)
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We also had the requirement
v(t+u)>m—0—r. (8.13)
Use Lemma 8.4.6 on (8.11) and (8.13), noting the distance between the two centers is

exactly
b au — di -
v<u+2a>—v< o0 >—v(au—du).

n—r

2

Considering that our disks have “radius” [ _‘ and m — d — r respectively, we obtain

two possible situations:

o If m < [%] + 6 + r then Lemma 8.4.5 and Lemma 8.4.6 apply if and only if,

respectively,

n—r
2
v(aw —da) >m — 6§ —r. (8.15)

v(4 — bb) >

(8.14)

_

o If m > |27 | 4+ § + r then Lemma 8.4.5 and Lemma 8.4.6 apply if and only if|
2

respectively,

v(l—wuu) >m—95—r (8.16)

v(au — da) > [”;ﬂ (8.17)

To proceed further, we need to prove a few properties. We list them in turn.
Fact 8.4.7. Whenever ¢ is odd, we must have
v(b) = v(d) = 0. (8.18)

Proof of (8.18). If v(d) # 0, then b = —au — du is a unit, and hence so is b> — 4ad,
causing ¢ = 0, contradiction. And if d is a unit, £ # 0 means v(b) = 0 too. O

Next, note that (8.4) together with (8.18) and the assumption ¢ was odd implies
¢ =v(1 —un) < 2v(au — du). (8.19)
This implies that:

Fact 8.4.8. (8.15) and (8.17) are redundant for odd /, i.e. they are automatically true
whenever n >0and n—r<m<n-+4§+r.

Proof. Delete the ceilings. We have "5+ < % < v(au — du) in both cases. And in (8.14),

we have m — ¢ —r < 5" anyway. O

Finally, the equation v(4 — bb) = —4au(l — dd) — b(b*> — 4ad) together with (8.18)
implies B
v(4 — bb) > min(¢, ) with equality if £ # 0. (8.20)

Hence, a priori (8.20) suggests that we have a condition n < r+24 in addition to n < r+2.
However, this condition also turns out to be redundant.
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Lemma 8.4.9
When /¢ is odd we always have ¢ < 2.

Proof. To be written up. O

Putting all of this together, we find that the valid pairs (n,m) come in two cases.

q[ First case The first case is

1<n</l+r,
_ 8.21
n—rﬁmé[n T—‘+5+T—1 ( )
where each (m,n) gives a volume contribution of
qfnf[%] (1 — q_l) ifn>r
g " (1—q7?) ifn <7
q[ Second case The second case is
1<n<l+r,
(8.22)

max<n—r, {n;r-‘ —|—5+r> <m < min(n, )+ 0 + r.

where each (m,n) gives a volume contribution of
) (1Y) itms 64y
qg " (l—q_2) ifm <6+

Notice that m < § 4+ r could only occur when n < r.

§8.4.5 The case where n > 0, ¢ is even, v(b) = v(d) =0

As before we consider n >0 and n—r < m <n-+J+ r as fixed, and seek to compute
the volume of the set of ¢ for which n = v(1 — tt) and 1(~,t,m) = 0.

Suppose £ is even. Then the left-hand side of (8.4) is a square, which we denote 72. In
this case, we obtain

20(7) = £ = 2v(au — di) > X = v(1 — uw).
Then the condition that

v((2at —b)2 - (b* - 4a(f)> >n—r
—72
falls into three disjoint parts:
« Both v ((2at — b)*) > n—r and £ = v(7%) > n — r hold, as in the £ odd case.
« We have ¢ = v(7?) < n—r (hence v ((2at — b)?) < n —r too) but
v(2at —bFT)>(Nn—1r)—£/2>0

which in particular implies v(2at — b+ 7) = ¢/2. This is two parts, corresponding
to the choice of +.
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We analyze the second case since the first case is the same as before (as we are assuming
(8.18) in this section; it does not follow for ¢ even). The constrains on ¢ become the two
circles

v(t—b;:aT> >n—0/2—7 (8.23)
vit+u)>m—0—r. (8.24)

Note that B
_bj:T b+ T _4—N(bir)

2a 20 4
The distance between the two circles has valuation

1

b+ -
v(u+2T> =v(au —du + 7).

Since (au — du)? — 72 = 4ad(1 — u@), we agree now to fix the choice of the square root of
7 such that

viau —di+71) =X —v(r) and wv(au—du—7)=v(T). (8.25)
From v(b) = v(d) = 0 and (8.4), we have
¢ =2v(1) = 2v(au — du) < \.

When v(b) = v(d) = 0 we also automatically have d,¢ > 0
This lets us invoke [Zhal2, Lemma 4.7] to evaluate v(4 — N(b=+ 7)): we have

A+d—Cl=v(4—-N(0b+1))
d=v(4—-Nb-1)).
So we obtain 2 - 2 = 4 total cases.
b+
2

q Case 17. Suppose m < n — % + 9, and we choose 3-F. Then the contribution is

nonempty if and only if

)\+5—€:v(4—N(b+7))Zn—§—r
AN—t)2=v(au—di+T)>m—36—r.

Compiling all seven constraints gives that the valid pairs (m,n) are those for which
L
maX(17£+T+1) <n< —§+5+7"—|—)\,
: 14 l
n—r <m < min n+5+7’,n—§+5—1,)\—§+5+r
However, n+d +1r>n — % + r is clear. So this equation can be whittled down to

max(1,/+r+1)<n<——+5+r+ ),

N~

0 0 (8.26)
n—rﬁmﬁmin(n—2+5—1,)\—2+(5+r>.

Each (m,n) gives a volume contribution of

qfnf(nff/er) (1 - qfl) )
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q[ Case 17. Suppose m <n — g + 6, and we choose bz_—aT. Then the disks have nonempty
intersection whenever

~

d=vd-Nb-71)>n—=—

[\

/2 =v(au—di—71)>m—6 —r.

Compiling all seven constraints gives that the valid pairs (m,n) are those for which

max(l,l+r+1)<n<_-+d+r,

NSRS N

L l
n—r§m§min<n—2—|—5—1,2—|—5—|—r,n+5—|—r>
However, n — % +d-12> 5—1— 0 + 7 hold automatically once n > £ + r + 1, and
n+5+7‘2n—§+5—1istruefoerO. So we can simplify this to

{
max(1,l+r+1)<n<_-+d5+r,
2( (8.27)
n—r§m§§+6+r.

As in the previous case, (m,n) gives a volume contribution of

q—n—(n—Z/Q—r) (1 - q—l) )

b+1

T Then the contribution is

q Case 2. Suppose m > n — g + 6, and we choose
nonempty if and only if

A>m—0—r

A —0/2 =v(au —du+T) Zn—g—r.

Rearranging gives that the valid pairs (m,n) are those for which

max(L,l+r+1)<n<A+r

0 _ (8.28)
max (n—r,n— 5—1—6 <m < min(n,\) +r + 0.
Here, each (m,n) gives a volume contribution of
q—n—(m—é—r‘) (1 o q—l) .
q[ Case 27. Suppose m >n — g + 6§, and we choose b;r—aT. Then the disks have nonempty

intersection whenever
A>m—60—r

L
E/Q:U(au—dﬁ—v')zn—i—r.

The latter inequality contradicts the assumption that n > £ + r, so this case can never
occur.
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§8.5 Evaluation of the integral

§8.5.1 Region where n < 0 for all values of /¢

~
Proposition 8.5.1
The contribution to the integral O(v, s) over n < 0 is exactly
o+2r
I<g = q2(5+r)s Z q72js — q727“s I q2(5+r)s'
. J
Proof. For n =0 we get a contribution of
H/ 1(n = 0)1(y,t,m)g* ™™g *™ dt dty
ttiel
S+r
=k Vol(t : n=0) Z Vol(t (t1) = m)g®m =Y
m=—r
o+r
1
— <1 B qt ) Z (q2m (1 B q—z)) g2ms=1)
q m=-—r
o+r
q+1
=K (1 - — > 1 —q Z @m
q m=-—r
For the region where v(t) = —k < 0, for each individual k£ > 0,
m/ 1(v(t) = —k)1(7,t,m)@P™ M2 de dty
ttiel
o+r—k
=k Vol(t:v(t) =—k) Y Vol(ty : —v(ty) = m)g* 2k —4h=2m
m=—r—k
o+r—k
— I{q2k (1 _ q—2) Z (q2m (1 _ q—2)) qs(2m+2k)—4k—2m
m=—r—k
) o+r—k
_ Hq—2k (1 _ q—2) Z q2(m+k)s
m=—r—=k
) o+r '
_ Klq_2k (1 - q—2) Z q2zs'
i=—r
Since D ;< = 1q;_2, we find that the total contribution across both the n = 0 case

and the k > 0 case is

(e £

i=—r
o+r
_ (1 —q 1 —q Z q2zs
i=—r
o+r
_ Z qQ’LS‘
i=—r
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This equals the claimed sum above. (We write it over 0 < j < § + 2r for consistency with
a later part.) O

§8.5.2 Region where n > ( for odd ¢
Again using Vol(t; : —v(t1) = m) = ¢*™(1 — ¢~2), summing all the cases gives
B [ 1> 010.m)
tithh€eR
;257 ere
— KZ Z q—n (1 - q—2) . ((_1)nqs(2m—n)q2n—2m) (qu(l . q—2)>

Crr [P0l

+h Y Y - ((—1)"q5(2m_")q2”‘2m) (qu(l - q_2))

TR > (1= q7) - (1)@ ) (@2 (1 - g72)

n=1 m=—max (nfr, [";q +§+r)

O+r min(n,f)+d+r

4 KZ Z qfnf(mféfr) (1 N qfl)

=1 m=max(n—r,[ 257 +5+r,d+r+1)

((ryrgr g (g1 - )

ro [ BT ]+6+r—1
— Z Z qn (1 + q—l) . (71)nqs(2m—n)
n=1 m=n—r
tr 25T ]H6+r—1
+ Z Z g5t L (—1)ngs@mn)
n=r+1 m=n—r
r o+r
+ Z Z qn (1 + qfl) . (_l)nqs(2m7n)

n=1 m=max (n—r,[ 257 ]+6+7)

2
O+r min(n,0)+0-+r

+ Z Z qnf(mftsfr) . (_1)nqs(2mfn)'

n=1 m=max (n—'r, { ”;"] +6+’r,6+r+1)

To simplify the expressions, we replace the summation variable m with
j=m+0+r)—m>0.

In that case,
2m—n=2(0+n+r—j)—n=n+25+ 2r — 2j.

Then the expression rewrites as

r 6+2r
Igcido _ Z Z q" (1 + q—l) . (_1>nqs(n+26+2r—2])
nli=lr e
l+r 6+2r

+ Z Z qL";fTJ '(_1)nqs(n+26+2r72j)

R
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p min(542r, I_”T“J )

+ Z Z qn (1 + q—l) . (71)nqs(n+25+2r—2j)

(4 min(6+2r,| 24 | n—1)

+ Z Z qj . (_l)nqs(n+25+2r—2j).
n=1

j=max(0,n—,)

We interchange the order of summation so that it is first over j and then n. There are
four double sums to interchange.

The first double sum runs from j = L%lJ +1toj =9J+ 2r. In addition to
1 <n <r, we need L”%”"J + 1 < j, which solves to ”JQF’" Sj—%orn§2j—1—r.
Thus the condition on n is

1<n<min(2j —1—rr).

The second double sum runs from j = r+1to d+2r. Wealsoneed r+1 < n < /{+r
and n < 25 — 1 — r. Hence, the desired condition on n is

r+1<n<min(2j —1—-r/l+r).

The third double runs from j = 1 to j = r. Meanwhile, the values of n need to
satisfy 1 <n <r,n<jand j < L”JQF”J = n > 2j —r, consequently we just
obtain

max(1,25 —r) <n < j.

The fourth double sum runs j = 0 to

jzmin<5+2r, m +r,€+r—1> = KJ + 7

again because of Lemma 8.4.9. Meanwhile, we require 1 <n < {l+r, j >n —{,
J<n—1 aswell as j < L"T‘H"J <= n > 2j —r. Putting these four conditions
together gives

max(j +1,2j —r) <n < £+ min(j,r).

Hence we get

§+2r  min(2j—1-rr)
L(;(ido _ Z Z q" (1 + q—l) . (_1>nqs(n+25+2r—2j)
=l e

§+2r min(2j—1—rl+r)

+ Z Z anerTJ . (_1)nqs(n+25+2r72j)

+ Z Z q" (1 + qfl) . (_1)nqs(n+26+2r72j)

j=1 n=max(1,2j—7)

L%J +r £+min(j,r)

+ Z Z qj . (_1)nqs(n+25+2r72j)‘

J=0 n=max(j+1,25—7r)

At this point, we can unify the sum over j by noting that for j outside of the summation
range, the inner sum is empty anyway. Specifically, note that:

o8
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e In the first and second double sum, the inner sum over n is empty anyway when
g <r.

e In the third double sum, adding j = 0 does not introduce new terms. Moreover,
when j > r the inner sum over n is also empty anyway.

e In the fourth double sum, if j > LgJ + 7, the inner double sum vanishes since
2j —r > ¢+ min(j,r) in that case.

So we can unify all four double sums to run over 0 < j < §+2r, simplifying the expression
to just

I?Ld>dO _ q2(6+r)s Z Z q" (1 + q—l) . (_l)nqs(n—Qj)

5+2r < min(2j—1—r,r)
7=0 n=1

min(2j—1—r/+r)

D DI U G Vi)
n=r+1
J

+ Z qn (1 + q—l) . (_l)nqs(n—Qj)

n=max(1,25—r)

£+min(j,r) . .
+ Z ¢ - (_1)nq8(n—2j)>_

n=max(j+1,2j—r)

§8.5.3 Completed case when / is odd

Combining the previous two results gives

§+2r min(2j—1—r,r)
Inco + ;%G = 200 > (q‘%s + Y (g (-
§=0 n=1
min(2j—1—rf+r)
D DR B CHVLY A
n=r+1
J
+ Z q" (1 +q—1) . (_1)nqs(n—2j)

n=max(1,2j—r)

£+min(j,r) ‘ '
+ Z ¢ - (_1)nq8(n2j)>_

n=max(j+1,2j—r)

§8.5.4 Region where n > 0 for even /
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