Auto－Generated EGMO Solutions Treasury

Evan Chen《陳誼廷》

31 January 2024

Contents

1 Solutions for Angle Chasing 6
1a CGMO 2012/5 6
$1 b$ Canada 1991/3 6
1c Russia 1996/10.1 7
1d JMO 2011/5 7
1e IMO 2006/1 8
$1 f$ USAMO 2010/1 9
1 g IMO 2013/4 10
1h IMO 1985/1 11
2 Solutions for Circles 13
2a USAMO 1990/5 13
2b JMO 2012/1 13
2c IMO 2008/1 13
2d USAMO 1997/2 14
2e IMO 1995/1 14
$2 f$ USAMO 1998/2 15
2 g IMO 2000/1 16
2h IMO 2009/2 17
2 i Canada 2007/5 17
2 j Iran TST 2011/1 18
3 Solutions for Lengths and Ratios 20
3a Shortlist 2006 G3 20
3b USAMO 2003/4 20
3c USAMO 1993/2 21
3d EGMO 2013/1 22
3e APMO 2004/2 23
$3 f \quad$ TSTST 2011/4 23
3g USAMO 2015/2 24
4 Solutions for Assorted Configurations 27
4a Shortlist 2003 G2 27
4 b USAMO 1988/4 27
4c USAMO 1995/3 27
4d USA TST 2014/1 28
4e USA TST 2011/1 28
4f ELMO SL 2013 G7 28
4 g USAMO 2011/5 29
4h Japan 2009 29
4 i Vietnam TST 2003/2 30
4j Sharygin 2013/16 31
4k APMO 2012/4 32
41 Shortlist 2002 G7 33
5 Solutions for Computational Geometry 36
5a EGMO 2013/1 36
5b USAMO 2010／4 36
5c IMO 2007／4 37
5d JMO 2013／5 38
5 e CGMO 2007／5 39
$5 f$ Shortlist 2011 G1 39
5 g IMO 2001／1 40
5h IMO 2001／5 40
$5 i \quad$ IMO 2001／6 42
6 Solutions for Complex Numbers 44
6a USAMO 2015／2 44
6b China TST 2006／4／1 46
6c USA TST 2014／5 47
6d OMO 2013 F26 47
6e IMO 2009／2 48
6f APMO 2010／4 49
6 g Shortlist 2006 G9 51
6h MOP 2006／4／1 52
6i Shortlist 1998 G6 53
6j ELMO SL 2013 G7 54
7 Solutions for Barycentric Coordinates 55
7a IMO 2014／4 55
7b EGMO 2013／1 56
7c ELMO SL 2013 G3 57
7d IMO 2012／1 57
7 e USA TST 2008／7 58
$7 f$ USAMO 2001／2 59
7 g TSTST 2012／7 59
7 h December TST 2012／1 60
7i Sharygin 2013／20 61
7j APMO 2013／5 62
7 k USAMO 2005／3 63
7l Shortlist 2011 G2 64
7m Romania TST 2010／6／2 65
7n ELMO 2012／5 66
7o USA TST 2004／4 67
7p TSTST 2012／2 67
7q IMO 2004／5 68
7r Shortlist 2006 G4 69
8 Solutions for Inversion 71
8a BAMO 2011／4 71
8b Shortlist 2003 G4 71
8c EGMO 2013／5 71
8d Russia 2009／10．2 72
8e Shortlist 1997／9 72
8f IMO 1993／2 73
8 g IMO 1996／2 73
8h IMO 2015／3 73
9 Solutions for Projective Geometry 75
9a TSTST 2012／4 75
9b Singapore TST 75
9c Canada 1994／5 76
9d ELMO SL 2012 G3 76
9e IMO 2014／4 77
9f Shortlist 2004 G8 78
9g Sharygin 2013／16 79
9h Shortlist 2004 G2 80
9i January TST 2013／2 81
9j Brazil 2011／5 82
9k ELMO SL 2013 G3 83
91 APMO 2008／3 84
9m ELMO SL 2014 G2 85
9n Shortlist 2005 G6 86
10 Solutions for Complete Quadrilaterals 88
10a USAMO 2013／1 88
10b Shortlist 1995 G8 88
10c USA TST 2007／1 89
10d USAMO 2013／6 90
10e USA TST 2007／5 92
10f IMO 2005／5 93
10 g USAMO 2006／6 94
10h Balkan 2009／2 94
10i TSTST 2012／7 95
10j TSTST 2012／2 96
10k USA TST 2009／2 97
101 Shortlist 2009 G4 97
10m Shortlist 2006 G9 99
10n Shortlist 2005 G5 100
11 Solutions for Personal Favorites 102
11a Canada 2000／4 102
11b EGMO 2012／1 102
11c ELMO 2013／4 103
11d USAMTS 3／3／24 104
11e Sharygin 2013／21 105
$11 f$ ELMO 2012／1 106
$11 g$ Sharygin 2013／14 106
11h Bulgaria 2012 107
11i Sharygin 2013／15 108
11j Sharygin 2013／18 110
11k USA TST 2015／1 111
111 EGMO 2014／2 113
11m OMO 2013 W49 115
11n USAMO 2007／6 116
11o Sharygin 2013／19 118
11p USA TST 2015／6 119
11q Iran TST 2009／9 123
11r IMO 2011／6 123
11s Taiwan TST 2014／3J／3 125
11t Taiwan Quiz 2015／3J／6 127
A Generating Code 129
A． 1 Database dump script（Python） 129
A． 2 Input data 131

1 Solutions for Angle Chasing

I won't go easy on you, and I hope you won't go easy on me, either.

Serral to Bunny before their semifinals match at
DreamHack Starcraft 2 Masters Atlanta 2022

§1a CGMO 2012/5

Let $A B C$ be a triangle. The incircle of $\triangle A B C$ has center I and is tangent to $\overline{A B}$ and $\overline{A C}$ at D and E respectively. Let O denote the circumcenter of $\triangle B C I$. Prove that $\angle O D B=\angle O E C$.
(Available online at https://aops.com/community/p2769872.)

By Fact $5, O$ is the midpoint of arc $B C$, and so it's immediate that $\triangle A D O \cong \triangle A E O$ which implies the result.

§1b Canada 1991/3

Let P be a point inside circle ω. Consider chords of ω passing through P. Prove that the midpoints of these chords all lie on a fixed circle.
(Available online at https://aops.com/community/p2445591.)

Letting O be the center of the circle, the midpoints lie on the circle with diameter $\overline{O P}$.

§1c Russia 1996／10．1

Points E and F are given on side $B C$ of convex quadrilateral $A B C D$（with E closer than F to B ）．It is known that $\angle B A E=\angle C D F$ and $\angle E A F=\angle F D E$ ．Prove that $\angle F A C=\angle E D B$ ．
（Available online at https：／／aops．com／community／p3025732．）

This is a direct angle chase．First，the problem tells us that $A E F D$ is cyclic．

Claim－Quadrilateral $A B C D$ is cyclic too．
Proof．Note that

$$
\begin{aligned}
\measuredangle D C B & =\measuredangle D C F=\measuredangle C D F+\measuredangle D F C \\
& =\measuredangle E A B+\measuredangle D F E=\measuredangle E A B+\measuredangle D A E=\measuredangle D A B .
\end{aligned}
$$

To finish，

$$
\measuredangle F A C=\measuredangle B A C-(\measuredangle B A E+\measuredangle E A F)=\measuredangle B D C-(\measuredangle F D C+\measuredangle E D F)=\measuredangle E D B .
$$

§1d JMO 2011／5

Points A, B, C, D, E lie on a circle ω and point P lies outside the circle．The given points are such that（i）lines $P B$ and $P D$ are tangent to ω ，（ii）P, A, C are collinear，and（iii） $\overline{D E} \| \overline{A C}$ ．Prove that $\overline{B E}$ bisects $\overline{A C}$ ．
（Available online at https：／／aops．com／community／p2254813．）

We present two solutions．
－First solution using harmonic bundles．Let $M=\overline{B E} \cap \overline{A C}$ and let ∞ be the point at infinity along $\overline{D E} \| \overline{A C}$ ．

Note that $A B C D$ is harmonic，so

$$
-1=(A C ; B D) \stackrel{E}{=}(A C ; M \infty)
$$

implying M is the midpoint of $\overline{A C}$ ．
【 Second solution using complex numbers（Cynthia Du）．Suppose we let b, d, e be free on unit circle，so $p=\frac{2 b d}{b+d}$ ．Then $d / c=a / e$ ，and $a+c=p+a c \bar{p}$ ．Consequently，

$$
\begin{aligned}
a c & =d e \\
\frac{1}{2}(a+c) & =\frac{b d}{b+d}+d e \cdot \frac{1}{b+d}=\frac{d(b+e)}{b+d} \\
\frac{a+c}{2 a c} & =\frac{(b+e)}{e(b+d)}
\end{aligned}
$$

From here it＇s easy to see

$$
\frac{a+c}{2}+\frac{a+c}{2 a c} \cdot b e=b+e
$$

which is what we wanted to prove．

§1e IMO 2006／1

Let $A B C$ be a triangle with incenter I ．A point P in the interior of the triangle satisfies

$$
\angle P B A+\angle P C A=\angle P B C+\angle P C B .
$$

Show that $A P \geq A I$ and that equality holds if and only if $P=I$ ．
（Available online at https：／／aops．com／community／p571966．）

The condition rewrites as
$\angle P B C+\angle P C B=(\angle B-\angle P B C)+(\angle C-\angle P C B) \Longrightarrow \angle P B C+\angle P C B=\frac{\angle B+\angle C}{2}$
which means that

$$
\angle B P C=180^{\circ}-\frac{\angle B+\angle C}{2}=90^{\circ}+\frac{\angle A}{2}=\angle B I C
$$

Since P and I are both inside $\triangle A B C$ that implies P lies on the circumcircle of $\triangle B I C$ ．
It＇s well－known（by＂Fact 5 ＂）that the circumcenter of $\triangle B I C$ is the arc midpoint M of $\widehat{B C}$ ．Therefore

$$
A I+I M=A M \leq A P+P M \Longrightarrow A I \leq A P
$$

with equality holding iff A, P, M are collinear，or $P=I$ ．

§1f USAMO 2010／1

Let $A X Y Z B$ be a convex pentagon inscribed in a semicircle of diameter $A B$ ．Denote by P, Q, R, S the feet of the perpendiculars from Y onto lines $A X, B X, A Z, B Z$ ， respectively．Prove that the acute angle formed by lines $P Q$ and $R S$ is half the size of $\angle X O Z$ ，where O is the midpoint of segment $A B$ ．
（Available online at https：／／aops．com／community／p1860802．）

Let T be the foot from Y to $\overline{A B}$ ．Then the Simson line implies that lines $P Q$ and $R S$ meet at T ．

Now it＇s straightforward to see $A P Y R T$ is cyclic（in the circle with diameter $\overline{A Y}$ ）， and therefore

$$
\angle R T Y=\angle R A Y=\angle Z A Y
$$

Similarly，

$$
\angle Y T Q=\angle Y B Q=\angle Y B X
$$

Summing these gives $\angle R T Q$ is equal to half the measure of arc $\widehat{X Z}$ as needed．
（Of course，one can also just angle chase；the Simson line is not so necessary．）

§1g IMO 2013／4

Let $A B C$ be an acute triangle with orthocenter H ，and let W be a point on the side $\overline{B C}$ ， between B and C ．The points M and N are the feet of the altitudes drawn from B and C ，respectively．Suppose ω_{1} is the circumcircle of triangle $B W N$ and X is a point such that $\overline{W X}$ is a diameter of ω_{1} ．Similarly，ω_{2} is the circumcircle of triangle $C W M$ and Y is a point such that $\overline{W Y}$ is a diameter of ω_{2} ．Show that the points X, Y ，and H are collinear．
（Available online at https：／／aops．com／community／p5720174．）

We present two solutions，an elementary one and then an advanced one by moving points．

【 First solution，classical．Let P be the second intersection of ω_{1} and ω_{2} ；this is the Miquel point，so P also lies on the circumcircle of $A M N$ ，which is the circle with diameter $\overline{A H}$ ．

We now contend：
Claim－Points P, H, X collinear．（Similarly，points P, H, Y are collinear．）

Proof using power of a point．By radical axis on BNMC，ω_{1}, ω_{2} ，it follows that A, P ， W are collinear．We know that $\angle A P H=90^{\circ}$ ，and also $\angle X P W=90^{\circ}$ by construction． Thus P, H, X are collinear．

Proof using angle chasing．This is essentially Reim＇s theorem：

$$
\measuredangle N P H=\measuredangle N A H=\measuredangle B A H=\measuredangle A B X=\measuredangle N B X=\measuredangle N P X
$$

as desired．Alternatively，one may prove A, P, W are collinear by $\measuredangle N P A=\measuredangle N M A=$ $\measuredangle N M C=\measuredangle N B C=\measuredangle N B W=\measuredangle N P W$ ．

Second solution，by moving points．Fix $\triangle A B C$ and vary W ．Let ∞ be the point at infinity perpendicular to $\overline{B C}$ for brevity．

By spiral similarity，the point X moves linearly on $\overline{B \infty}$ as W varies linearly on $\overline{B C}$ ． Similarly，so does Y ．So in other words，the map

$$
X \mapsto W \mapsto Y
$$

is linear．However，the map

$$
X \mapsto Y^{\prime}:=\overline{X H} \cap \overline{C \infty}
$$

is linear too．
To show that these maps are the same，it suffices to check it thus at two points．
－When $W=B$ ，the circle $(B N W)$ degenerates to the circle through B tangent to $\overline{B C}$ ，and $X=\overline{C N} \cap \overline{B \infty}$ ．We have $Y=Y^{\prime}=C$ ．
－When $W=C$ ，the result is analogous．
－Although we don＇t need to do so，it＇s also easy to check the result if W is the foot from A since then $X H W B$ and $Y H W C$ are rectangles．

§1h IMO 1985／1

A circle has center on the side $A B$ of the cyclic quadrilateral $A B C D$ ．The other three sides are tangent to the circle．Prove that $A D+B C=A B$ ．
（Available online at https：／／aops．com／community／p366584．）

Let T be the point such that $D A=A T$ ．
Claim－T lies on（DOC）．
Proof．Because

$$
\angle D C O=\frac{1}{2} \angle D C B=\frac{1}{2}\left(180^{\circ}-\angle B A D\right)=90^{\circ}-\frac{1}{2} \angle T A D=\angle D T A .
$$

Reversing the previous proof on the other side gives $B C=B T$ ．So $A B=A T+T B=$ $A D+B C$ ．

2 Solutions for Circles

I've waited here every day
But I don't know if I can tomorrow as well
Lullaby, by Dreamcatcher

§2a USAMO 1990/5

An acute-angled triangle $A B C$ is given in the plane. The circle with diameter $\overline{A B}$ intersects altitude $C C^{\prime}$ and its extension at points M and N, and the circle with diameter $A C$ intersects altitude $B B^{\prime}$ and its extensions at P and Q. Prove that M, N, P, Q are concyclic.
(Available online at https://aops.com/community/c6h58273p356630.)

Let T be the foot of the altitude from A, and let H be the orthocenter. Apparently

$$
H M \cdot H N=H A \cdot H T=H P \cdot H Q
$$

so we're done by powerc of a point.
Remark. Since $\overline{A B}$ and $\overline{A C}$ are the perpendicular bisectors of $\overline{M N}$ and $\overline{P Q}$ the circumcircle of $M N P Q$ coincides with the point A.

§2b JMO 2012/1

Given a triangle $A B C$, let P and Q be points on segments $\overline{A B}$ and $\overline{A C}$, respectively, such that $A P=A Q$. Let S and R be distinct points on segment $\overline{B C}$ such that S lies between B and $R, \angle B P S=\angle P R S$, and $\angle C Q R=\angle Q S R$. Prove that P, Q, R, S are concyclic.
(Available online at https://aops.com/community/p2669111.)

Assume for contradiction that $(P R S)$ and $(Q R S)$ are distinct. Then $\overline{R S}$ is the radical axis of these two circles. However, $\overline{A P}$ is tangent to (PRS) and $\overline{A Q}$ is tangent to $(Q R S)$, so point A has equal power to both circles, which is impossible since A does not lie on line $B C$.

§2c IMO 2008/1

Let H be the orthocenter of an acute-angled triangle $A B C$. The circle Γ_{A} centered at the midpoint of $\overline{B C}$ and passing through H intersects the sideline $B C$ at points A_{1} and
A_{2} ．Similarly，define the points B_{1}, B_{2}, C_{1} ，and C_{2} ．Prove that six points A_{1}, A_{2}, B_{1} ， B_{2}, C_{1}, C_{2} are concyclic．
（Available online at https：／／aops．com／community／p1190553．）

Let D, E, F be the centers of $\Gamma_{A}, \Gamma_{B}, \Gamma_{C}$（in other words，the midpoints of the sides）．
We first show that $B_{1}, B_{2}, C_{1}, C_{2}$ are concyclic．It suffices to prove that A lies on the radical axis of the circles Γ_{B} and Γ_{C} ．

Let X be the second intersection of Γ_{B} and Γ_{C} ．Clearly $\overline{X H}$ is perpendicular to the line joining the centers of the circles，namely $\overline{E F}$ ．But $\overline{E F} \| \overline{B C}$ ，so $\overline{X H} \perp \overline{B C}$ ．Since $\overline{A H} \perp \overline{B C}$ as well，we find that A, X, H are collinear，as needed．

Thus，$B_{1}, B_{2}, C_{1}, C_{2}$ are concyclic．Similarly，$C_{1}, C_{2}, A_{1}, A_{2}$ are concyclic，as are A_{1} ， A_{2}, B_{1}, B_{2} ．Now if any two of these three circles coincide，we are done；else the pairwise radical axii are not concurrent，contradiction．（Alternatively，one can argue directly that O is the center of all three circles，by taking the perpendicular bisectors．）

§2d USAMO 1997／2

Let $A B C$ be a triangle．Take noncollinear points D, E, F on the perpendicular bisectors of $B C, C A, A B$ respectively．Show that the lines through A, B, C perpendicular to $E F$ ， $F D, D E$ respectively are concurrent．
（Available online at https：／／aops．com／community／p210283．）

The three lines are the radical axii of the three circles centered at D, E, F ，so they concur．

§2e IMO 1995／1

Let A, B, C, D be four distinct points on a line，in that order．The circles with diameters $\overline{A C}$ and $\overline{B D}$ meet at X and Y ．The line $X Y$ meets $\overline{B C}$ at Z ．Let P be a point on the line $X Y$ other than Z ．The line $C P$ intersects the circle with diameter $A C$ at C and M ，and the line $B P$ intersects the circle with diameter $B D$ at B and N ．Prove that the lines $A M, D N, X Y$ are concurrent．
（Available online at https：／／aops．com／community／p365179．）

Note that：
Claim－$M B C N$ is cyclic．

Proof．From $P B \cdot P N=P X \cdot P Y=P C \cdot P M$ ．

Claim（Russia 1996／10．1）— $A M N D$ is cyclic．

Proof．$\measuredangle D A M=\measuredangle C A M=90^{\circ}-\measuredangle M C B=90^{\circ}-\measuredangle M N B=90^{\circ}+\measuredangle B N M=\measuredangle D N M$ ．

Then the conclusion follows by radical axis on $(A C),(B D),(A M N D)$ ．

§2f USAMO 1998／2

Let \mathcal{C}_{1} and \mathcal{C}_{2} be concentric circles，with \mathcal{C}_{2} in the interior of \mathcal{C}_{1} ．From a point A on \mathcal{C}_{1} one draws the tangent $A B$ to $\mathcal{C}_{2}\left(B \in \mathcal{C}_{2}\right)$ ．Let C be the second point of intersection of ray $A B$ and \mathcal{C}_{1} ，and let D be the midpoint of $\overline{A B}$ ．A line passing through A intersects \mathcal{C}_{2} at E and F in such a way that the perpendicular bisectors of $\overline{D E}$ and $\overline{C F}$ intersect at a point M on line $A B$ ．Find，with proof，the ratio $A M / M C$ ．
（Available online at https：／／aops．com／community／p343866．）

By power of a point we have

$$
A E \cdot A F=A B^{2}=\left(\frac{1}{2} A B\right) \cdot(2 A B)=A D \cdot A C
$$

and hence $C D E F$ is cyclic．Then M is the circumcenter of quadrilateral $C D E F$ ．

Thus M is the midpoint of $\overline{C D}$（and we are given already that B is the midpoint of $\overline{A C}$ ， D is the midpoint of $\overline{A B}$ ）．Thus a quick computation along $\overline{A C}$ gives $A M / M C=5 / 3$ ．

§2g IMO 2000／1

Two circles G_{1} and G_{2} intersect at two points M and N ．Let $A B$ be the line tangent to these circles at A and B ，respectively，so that M lies closer to $A B$ than N ．Let $C D$ be the line parallel to $A B$ and passing through the point M ，with C on G_{1} and D on G_{2} ． Lines $A C$ and $B D$ meet at E ；lines $A N$ and $C D$ meet at P ；lines $B N$ and $C D$ meet at Q ．Show that $E P=E Q$ ．
（Available online at https：／／aops．com／community／p354110．）

First，we have $\measuredangle E A B=\measuredangle A C M=\measuredangle B A M$ and similarly $\measuredangle E B A=\measuredangle B D M=\measuredangle A B M$ ． Consequently，$\overline{A B}$ bisects $\angle E A M$ and $\angle E B M$ ，and hence $\triangle E A B \cong \triangle M A B$ ．

Now it is well－known that $\overline{M N}$ bisects $\overline{A B}$ and since $\overline{A B} \| \overline{P Q}$ we deduce that M is the midpoint of $\overline{P Q}$ ．As $\overline{A B}$ is the perpendicular bisector of $\overline{E M}$ ，it follows that $E P=E Q$ as well．

§2h IMO 2009／2

Let $A B C$ be a triangle with circumcenter O ．The points P and Q are interior points of the sides $C A$ and $A B$ respectively．Let K, L, M be the midpoints of $\overline{B P}, \overline{C Q}, \overline{P Q}$ ， respectively，and let Γ be the circumcircle of $\triangle K L M$ ．Suppose that $\overline{P Q}$ is tangent to Γ ． Prove that $O P=O Q$ ．
（Available online at https：／／aops．com／community／p1561572．）

By power of a point，we have $-A Q \cdot Q B=O Q^{2}-R^{2}$ and $-A P \cdot P C=O P^{2}-R^{2}$ ． Therefore，it suffices to show $A Q \cdot Q B=A P \cdot P C$ ．

As $\overline{M L} \| \overline{A C}$ and $\overline{M K} \| \overline{A B}$ we have that

$$
\begin{aligned}
& \measuredangle A P Q=\measuredangle L M P=\measuredangle L K M \\
& \measuredangle P Q A=\measuredangle K M Q=\measuredangle M L K
\end{aligned}
$$

and consequently we have the（opposite orientation）similarity

$$
\triangle A P Q \approx \triangle M K L .
$$

Therefore

$$
\frac{A Q}{A P}=\frac{M L}{M K}=\frac{2 M L}{2 M K}=\frac{P C}{Q B}
$$

id est $A Q \cdot Q B=A P \cdot P C$ ，which is what we wanted to prove．

§2i Canada 2007／5

Let the incircle of triangle $A B C$ touch sides $B C, C A$ ，and $A B$ at D, E ，and F ，respectively． Let $\omega, \omega_{1}, \omega_{2}$ ，and ω_{3} denote the circumcircles of triangles $A B C, A E F, B D F$ ，and $C D E$ respectively．Let ω and ω_{1} intersect at A and P, ω and ω_{2} intersect at B and Q, ω and ω_{3} intersect at C and R ．Show that lines $P D, Q E$ ，and $R F$ are concurrent．
（Available online at https：／／aops．com／community／p894696．）

We present two solutions，one just by angle chasing，and another tricky one using spiral similarity．Inversion at the incircle also works very well．
－ \int First solution（angle chasing）．
Claim－Quadrilaterals $P E D Q, Q F E R, P F D R$ are all cyclic．

Proof．Angle chase：

$$
\begin{aligned}
\measuredangle Q P E & =\measuredangle Q P A+\measuredangle A P E \\
& =\measuredangle Q P A+\measuredangle A I E \\
& =\measuredangle Q B A+\measuredangle A B I+\measuredangle I D E \\
& =\measuredangle Q B I+\measuredangle I D E \\
& =\measuredangle Q D I+\measuredangle I D E \\
& =\measuredangle Q D E .
\end{aligned}
$$

This is apparently much harder than I remember，seeing that it took me half an hour to write down．

We＇re now done by radical axis．

【 Second solution（spiral similarity，Ryan Kim）．We note that：
Claim－Line $P D$ bisects $\angle B P C$ ，and thus passes through the arc midpoint X of $\widehat{B C}$ ．

Proof．The spiral similarity gives $P B / P C=B F / E C=B D / D C$ ．
Now consider the positive homothety mapping the incircle to the circumcircle，centered at the so－called X_{56} ．This homothety maps D to X ，so we have X_{56} is collinear with $D X$ ．Hence $\overline{P D}$ passes through X_{56} as desired．

§2j Iran TST 2011／1

Let $A B C$ be a triangle with $\angle B>\angle C$ ．Let M denote the midpoint of $B C$ and let D and E denote the feet of the altitude from C and B respectively．Let K and L denote the midpoints of $M E$ and $M D$ respectively．If $K L$ intersect the line through A parallel to $B C$ at point T ，prove that $T A=T M$ ．
（Available online at https：／／aops．com／community／p2266382．）

It＇s well－known that $M D, M E, A T$ are all tangent to $(A D E)$ ；see chapter 1 of the EGMO textbook，＂three tangents＂lemma．

Now line $K L$ is the radical axis of $(A E D)$ and the circle centered at M of radius zero． So by power of a point，

$$
T M^{2}=\operatorname{Pow}_{(A E D)}(T)=T A^{2}
$$

3 Solutions for Lengths and Ratios

I don't know what's weirder - that you're fighting a stuffed animal, or that you seem to be losing.

Susie Derkins, in Calvin and Hobbes

§3a Shortlist 2006 G3

Let $A B C D E$ be a convex pentagon such that

$$
\angle B A C=\angle C A D=\angle D A E \quad \text { and } \quad \angle A B C=\angle A C D=\angle A D E
$$

Diagonals $B D$ and $C E$ meet at P. Prove that ray $A P$ bisects $\overline{C D}$.
(Available online at https://aops.com/community/p741369.)

Let X denote the intersection of diagonals $\overline{A C}$ and $\overline{B D}$. Let Y denote the intersection of diagonals $\overline{A D}$ and $\overline{C E}$.

The given conditions imply that $\triangle A B C \sim \triangle A C D \sim \triangle A D E$. From this it follows that quadrilaterals $A B C D$ and $A C D E$ are similar. In particular, we have that $\frac{A X}{X C}=\frac{A Y}{Y D}$.

Now let ray $A P$ meet $\overline{C D}$ at M. Then Ceva's theorem applied to triangle $A C D$ implies that $\frac{A X}{X C} \cdot \frac{C M}{M D} \cdot \frac{D Y}{Y A}=1$, so $C M=M D$.

§3b USAMO 2003/4

Let $A B C$ be a triangle. A circle passing through A and B intersects segments $A C$ and $B C$ at D and E, respectively. Lines $A B$ and $D E$ intersect at F, while lines $B D$ and $C F$ intersect at M. Prove that $M F=M C$ if and only if $M B \cdot M D=M C^{2}$.
(Available online at https://aops.com/community/p336205.)

Ceva theorem plus the similar triangles.

We know unconditionally that

$$
\measuredangle C B D=\measuredangle E B D=\measuredangle E A D=\measuredangle E A C .
$$

Moreover，by Ceva＇s theorem on $\triangle B C F$ ，we have $M F=M C \Longleftrightarrow \overline{F C} \| \overline{A E}$ ．So we have the equivalences

$$
\begin{aligned}
M F=M C & \Longleftrightarrow \overline{F C} \| \overline{A E} \\
& \Longleftrightarrow \measuredangle F C A=\measuredangle E A C \\
& \Longleftrightarrow \measuredangle M C D=\measuredangle C B D \\
& \Longleftrightarrow M C^{2}=M B \cdot M D
\end{aligned}
$$

§3c USAMO 1993／2

Let $A B C D$ be a quadrilateral whose diagonals are perpendicular and meet at E ．Prove that the reflections of E across the sides of $A B C D$ are concyclic．
（Available online at https：／／aops．com／community／p356408．）

Let W, X, Y, Z be the reflections across $\overline{A B}, \overline{B C}, \overline{C D}, \overline{D A}$ and let $W^{\prime}, X^{\prime}, Y^{\prime}, Z^{\prime}$ be the midpoints of $\overline{E W}, \overline{E X}, \overline{E Y}, \overline{E Z}$ ；in other words，the feet of the perpendiculars from E to the respective sides．By a homothety，to prove that W, X, Y, Z are concyclic， it suffices to prove $W^{\prime}, X^{\prime}, Y^{\prime}, Z^{\prime}$ are concyclic．

We can do this with just angle chasing．Since $E W^{\prime} B X^{\prime}$ and $E X^{\prime} C Y^{\prime}$ are cyclic，

$$
\angle W^{\prime} X^{\prime} Y^{\prime}=\angle W^{\prime} X^{\prime} E+\angle E X^{\prime} Y^{\prime}=\angle W^{\prime} B E+\angle E C Y^{\prime}=\angle A B E+\angle E C D .
$$

Similarly，

$$
\angle Y^{\prime} Z^{\prime} W^{\prime}=\angle B A E+\angle E D C
$$

Then，
$\angle W^{\prime} X^{\prime} Y^{\prime}+\angle Y^{\prime} Z^{\prime} W^{\prime}=(\angle A B E+\angle B A E)+(\angle E D C+\angle E D C)=90^{\circ}+90^{\circ}=180^{\circ}$ ．
Hence $W^{\prime}, X^{\prime}, Y^{\prime}, Z^{\prime}$ are cyclic，as needed．

§3d EGMO 2013／1

The side $B C$ of the triangle $A B C$ is extended beyond C to D so that $C D=B C$ ．The side $C A$ is extended beyond A to E so that $A E=2 C A$ ．Prove that if $A D=B E$ then the triangle $A B C$ is right－angled．
（Available online at https：／／aops．com／community／p3013167．）

Let ray $D A$ meet $\overline{B E}$ at M ．Consider the triangle $E B D$ ．Since the point lies on median $\overline{E C}$ ，and $E A=2 A C$ ，it follows that A is the centroid of $\triangle E B D$ ．

So M is the midpoint of $\overline{B E}$ ．Moreover $M A=\frac{1}{2} A D=\frac{1}{2} B E$ ；so $M A=M B=M E$ and hence $\triangle A B E$ is inscribed in a circle with diameter $\frac{2}{B E}$ ．Thus $\angle B A E=90^{\circ}$ ，so $\angle B A C=90^{\circ}$ ．

§3e APMO 2004／2

Let O be the circumcenter and H the orthocenter of an acute triangle $A B C$ ．Prove that the area of one of the triangles $A O H, B O H$ and $C O H$ is equal to the sum of the areas of the other two．
（Available online at https：／／aops．com／community／p15307．）

It＇s actually true with line $O H$ replaced by any line ℓ through the centroid G ；in that case the directed sum of distances from A, B, C to ℓ is equal to zero．

Indeed，assume ℓ intersects segments $A B$ and $A C$ ．If M is the midpoint of $\overline{B C}$ then

$$
d(B, \ell)+d(C, \ell)=2 d(M, \ell)=d(A, \ell)
$$

by homothety．The end．
Tristan Shin points out that another way to see this is just directly by barycentric coordinates；indeed we have

$$
\begin{aligned}
{[A O H]+[B O H]+[C O H] } & =\frac{1}{128 K^{2}} \sum_{\text {cyc }} \operatorname{det}\left[\begin{array}{ccc}
1 & 0 & 0 \\
a^{2} S_{A} & b^{2} S_{B} & c^{2} S_{C} \\
S_{B C} & S_{C A} & S_{A B}
\end{array}\right] \\
& =\frac{1}{128 K^{2}} \operatorname{det}\left[\begin{array}{ccc}
1 & 1 & 1 \\
a^{2} S_{A} & b^{2} S_{B} & c^{2} S_{C} \\
S_{B C} & S_{C A} & S_{A B}
\end{array}\right] \\
& =0
\end{aligned}
$$

again since the centroid lies on line $O H$ ．

§3f TSTST 2011／4

Acute triangle $A B C$ is inscribed in circle ω ．Let H and O denote its orthocenter and circumcenter，respectively．Let M and N be the midpoints of sides $A B$ and $A C$ ， respectively．Rays $M H$ and $N H$ meet ω at P and Q ，respectively．Lines $M N$ and $P Q$ meet at R ．Prove that $\overline{O A} \perp \overline{R A}$ ．
（Available online at https：／／aops．com／community／p2374848．）

Let $M H$ and $N H$ meet the nine－point circle again at P^{\prime} and Q^{\prime} ，respectively．Recall that H is the center of the homothety between the circumcircle and the nine－point circle． From this we can see that P and Q are the images of this homothety，meaning that

$$
H Q=2 H Q^{\prime} \quad \text { and } \quad H P=2 H P^{\prime}
$$

Since $M, P^{\prime}, Q^{\prime}, N$ are cyclic，Power of a Point gives us

$$
M H \cdot H P^{\prime}=H N \cdot H Q^{\prime} .
$$

Multiplying both sides by two，we thus derive

$$
H M \cdot H P=H N \cdot H Q
$$

It follows that the points M, N, P, Q are concyclic．

Let $\omega_{1}, \omega_{2}, \omega_{3}$ denote the circumcircles of $M N P Q, A M N$ ，and $A B C$ ，respectively． The radical axis of ω_{1} and ω_{2} is line $M N$ ，while the radical axis of ω_{1} and ω_{3} is line $P Q$ ． Hence the line R lies on the radical axis of ω_{2} and ω_{3} ．

But we claim that ω_{2} and ω_{3} are internally tangent at A ．This follows by noting the homothety at A with ratio 2 sends M to B and N to C ．Hence the radical axis of ω_{2} and ω_{3} is a line tangent to both circles at A ．

Hence $\overline{R A}$ is tangent to ω_{3} ．Therefore，$\overline{R A} \perp \overline{O A}$ ．

§3g USAMO 2015／2

Quadrilateral $A P B Q$ is inscribed in circle ω with $\angle P=\angle Q=90^{\circ}$ and $A P=A Q<B P$ ． Let X be a variable point on segment $\overline{P Q}$ ．Line $A X$ meets ω again at S（other than A ）． Point T lies on arc $A Q B$ of ω such that $\overline{X T}$ is perpendicular to $\overline{A X}$ ．Let M denote the midpoint of chord $\overline{S T}$ ．

As X varies on segment $\overline{P Q}$ ，show that M moves along a circle．
（Available online at https：／／aops．com／community／p4769957．）

We present three solutions，one by complex numbers，two more synthetic．（A fourth solution using median formulas is also possible．）Most solutions will prove that the center of the fixed circle is the midpoint of $\overline{A O}$（with O the center of ω ）；this can be recovered empirically by letting
－X approach P（giving the midpoint of $\overline{B P}$ ）
－X approach Q（giving the point Q ），and
－X at the midpoint of $\overline{P Q}$（giving the midpoint of $\overline{B Q}$ ）
which determines the circle；this circle then passes through P by symmetry and we can find the center by taking the intersection of two perpendicular bisectors（which two？）．
－Complex solution（Evan Chen）．Toss on the complex unit circle with $a=-1, b=1$ ， $z=-\frac{1}{2}$ ．Let s and t be on the unit circle．We claim Z is the center．
It follows from standard formulas that

$$
x=\frac{1}{2}(s+t-1+s / t)
$$

thus

$$
4 \operatorname{Re} x+2=s+t+\frac{1}{s}+\frac{1}{t}+\frac{s}{t}+\frac{t}{s}
$$

which depends only on P and Q ，and not on X ．Thus

$$
4\left|z-\frac{s+t}{2}\right|^{2}=|s+t+1|^{2}=3+(4 \operatorname{Re} x+2)
$$

does not depend on X ，done．
【 Homothety solution（Alex Whatley）．Let G, N, O denote the centroid，nine－point center，and circumcenter of triangle $A S T$ ，respectively．Let Y denote the midpoint of $\overline{A S}$ ．Then the three points X, Y, M lie on the nine－point circle of triangle $A S T$ ，which is centered at N and has radius $\frac{1}{2} A O$ ．

Let R denote the radius of ω ．Note that the nine－point circle of $\triangle A S T$ has radius equal to $\frac{1}{2} R$ ，and hence is independent of S and T ．Then the power of A with respect to the nine－point circle equals

$$
A N^{2}-\left(\frac{1}{2} R\right)^{2}=A X \cdot A Y=\frac{1}{2} A X \cdot A S=\frac{1}{2} A Q^{2}
$$

and hence

$$
A N^{2}=\left(\frac{1}{2} R\right)^{2}+\frac{1}{2} A Q^{2}
$$

which does not depend on the choice of X ．So N moves along a circle centered at A ．

Since the points O, G, N are collinear on the Euler line of $\triangle A S T$ with

$$
G O=\frac{2}{3} N O
$$

it follows by homothety that G moves along a circle as well，whose center is situated one－third of the way from A to O ．Finally，since A, G, M are collinear with

$$
A M=\frac{3}{2} A G
$$

it follows that M moves along a circle centered at the midpoint of $\overline{A O}$ ．
－P Power of a point solution（Zuming Feng，official solution）．We complete the picture by letting $\triangle K Y X$ be the orthic triangle of $\triangle A S T$ ；in that case line $X Y$ meets the ω again at P and Q ．

The main claim is：
Claim－Quadrilateral $P Q K M$ is cyclic．
Proof．To see this，we use power of a point：let $V=\overline{Q X Y P} \cap \overline{S K M T}$ ．One approach is that since $(V K ; S T)=-1$ we have $V Q \cdot V P=V S \cdot V T=V K \cdot V M$ ．A longer approach is more elementary：

$$
V Q \cdot V P=V S \cdot V T=V X \cdot V Y=V K \cdot V M
$$

using the nine－point circle，and the circle with diameter $\overline{S T}$ ．
But the circumcenter of $P Q K M$ ，is the midpoint of $\overline{A O}$ ，since it lies on the perpendicular bisectors of $\overline{K M}$ and $\overline{P Q}$ ．So it is fixed，the end．

4
 Solutions for Assorted Configurations

We should switch from 5 answer choices to 6 answer choices so we can just bubble a lot of F's to express our feelings.

Evan's reaction to the AMC edVistas website

§4a Shortlist 2003 G2

Three distinct points A, B, and C are fixed on a line in this order. Let Γ be a circle passing through A and C whose center does not lie on the line $A C$. Denote by P the intersection of the tangents to Γ at A and C. Suppose Γ meets the segment $P B$ at Q. Prove that the intersection of the bisector of $\angle A Q C$ and the line $A C$ does not depend on the choice of Γ.
(Available online at https://aops.com/community/p19089.)

Note that $\overline{Q P}$ is a symmedian of $\triangle A Q C$, so

$$
\frac{A B}{B C}=\frac{A Q^{2}}{C Q^{2}}
$$

so $A Q / C Q$ is fixed, and done by angle bisector theorem.

§4b USAMO 1988/4

Let I be the incenter of triangle $A B C$, and let A^{\prime}, B^{\prime}, and C^{\prime} be the circumcenters of triangles $I B C, I C A$, and $I A B$, respectively. Prove that the circumcircles of triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are concentric.
(Available online at https://aops.com/community/c6h420561p2375323.)

It's known that A^{\prime} is the midpoint of minor arc $B C$ along the circumcircle $A B C$. So not only are the desired circles obviously concentric, they are in fact the same circle...

§4c USAMO 1995/3

Given a scalene nonright triangle $A B C$, let O denote the center of its circumscribed circle, and let A_{1}, B_{1}, and C_{1} be the midpoints of the sides. Point A_{2} is located on the ray $O A_{1}$ so that $\triangle O A A_{1}$ is similar to $\triangle O A_{2} A$. Points B_{2} and C_{2} on rays $O B_{1}$ and $O C_{1}$, respectively, are defined similarly. Prove that lines $A A_{2}, B B_{2}$, and $C C_{2}$ are concurrent.
(Available online at https://aops.com/community/p143328.)

As A_{2} is the intersection of the tangents to the circumcircle at B and C, it follows line $A A_{2}$ is a symmedian. And the three symmedians concur at the symmedian point.

§4d USA TST 2014／1

Let $A B C$ be an acute triangle，and let X be a variable interior point on the minor arc $B C$ of its circumcircle．Let P and Q be the feet of the perpendiculars from X to lines $C A$ and $C B$ ，respectively．Let R be the intersection of line $P Q$ and the perpendicular from B to $A C$ ．Let ℓ be the line through P parallel to $X R$ ．Prove that as X varies along minor arc $B C$ ，the line ℓ always passes through a fixed point．
（Available online at https：／／aops．com／community／p3332310．）

The fixed point is the orthocenter，since ℓ is a Simson line．See Lemma 4.4 of Euclidean Geometry in Math Olympiads．

§4e USA TST 2011／1

In an acute scalene triangle $A B C$ ，points D, E, F lie on sides $B C, C A, A B$ ，respectively， such that $A D \perp B C, B E \perp C A, C F \perp A B$ ．Altitudes $A D, B E, C F$ meet at orthocenter H ．Points P and Q lie on line $E F$ such that $A P \perp E F$ and $H Q \perp E F$ ．Lines $D P$ and $Q H$ intersect at point R ．Compute $H Q / H R$ ．
（Available online at https：／／aops．com／community／p2374795．）

The answer is 1 ．
To see this，focus just on triangle $D E F$ ．As H is the incenter and A is the D－excenter， the points Q and P are the respective contact points of the incircle and D－excircle．So R is the antipode of Q along the incircle．

§4f ELMO SL 2013 G7

Let $A B C$ be a triangle inscribed in circle ω ，and let the medians from B and C intersect ω at D and E respectively．Let O_{1} be the center of the circle through D tangent to $\overline{A C}$ at C ，and let O_{2} be the center of the circle through E tangent to $\overline{A B}$ at B ．Prove that O_{1}, O_{2} ，and the nine－point center of $A B C$ are collinear．
（Available online at https：／／aops．com／community／p3151965．）

We use complex numbers with $(A B C)$ the unit circle．
To compute D ，note that since the midpoint of $\overline{A C}$ lies on chord $\overline{B D}$ ，we should have

$$
b+d=\frac{a+c}{2}+b d \cdot \frac{a+c}{2 a c} \Longrightarrow d=\frac{\frac{a+c}{2}-b}{1-\frac{b(a+c)}{2 a c}}=\frac{a c(a+c-2 b)}{2 a c-b(a+c)} .
$$

We now seek to compute O_{1} ．Let O denote the circumcircle．Note that since $\triangle A O D \sim$ $\triangle D C O_{1}$ we have

$$
\frac{o_{1}-d}{c-d}=\frac{-d}{a-d}
$$

so

$$
o_{1}=\frac{d(a-d)-d(c-d)}{a-d}=\frac{d(a-c)}{a-d}
$$

$$
\begin{aligned}
& =\frac{a c(a+c-2 b)(a-c)}{a(2 a c-b(a+c))-a c(a+c-2 b)} \\
& =\frac{c(a+c-2 b)(a-c)}{a c-a b+b c-c^{2}}=\frac{c(a+c-2 b)}{c-b} .
\end{aligned}
$$

Similarly $o_{2}=\frac{b(a+b-2 c)}{b-c}$ ．We now find that

$$
\frac{o_{1}+o_{2}}{2}=\frac{b(a+b-2 c)-c(a+c-2 b)}{2(b-c)}=\frac{a+b+c}{2}
$$

so in fact the nine－point center is the midpoint of O_{1} and O_{2} ．

§4g USAMO 2011／5

Let P be a point inside convex quadrilateral $A B C D$ ．Points Q_{1} and Q_{2} are located within $A B C D$ such that

$$
\begin{array}{ll}
\angle Q_{1} B C=\angle A B P, & \angle Q_{1} C B=\angle D C P, \\
\angle Q_{2} A D=\angle B A P, & \angle Q_{2} D A=\angle C D P .
\end{array}
$$

Prove that $\overline{Q_{1} Q_{2}} \| \overline{A B}$ if and only if $\overline{Q_{1} Q_{2}} \| \overline{C D}$ ．
（Available online at https：／／aops．com／community／p2254841．）

If $\overline{A B} \| \overline{C D}$ there is nothing to prove．Otherwise let $X=\overline{A B} \cap \overline{C D}$ ．Then the Q_{1} and Q_{2} are the isogonal conjugates of P with respect to triangles $X B C$ and $X A D$ ．Thus X, Q_{1}, Q_{2} are collinear，on the isogonal of $\overline{X P}$ with respect to $\angle D X A=\angle C X B$ ．

§4h Japan 2009

Triangle $A B C$ has circumcircle Γ ．A circle with center O is tangent to $B C$ at P and internally to Γ at Q ，so that Q lies on arc $B C$ of Γ not containing A ．Prove that if $\angle B A O=\angle C A O$ then $\angle P A O=\angle Q A O$ ．

We present two solutions．
【 First solution by standard methods．Let M and L be the midpoints of the arcs $B C$ of Γ where M lies on the opposite side of line $B C$ as A ．

We claim that the points P, Q, L are collinear．To see this，one could note that an inversion at L with radius $L B=L C$ swaps points P and Q ．Alternatively，we take a homothety at Q mapping the circle with center O to Γ ；since $B C$ is a tangent，this necessarily takes Q to L ．

In any case，we can now note that $O P$ and $L M$ are parallel（since they are both perpendicular to $B C$ ），and by assumption points A, O, M are collinear．It follows that $A P O Q$ is cyclic，as

$$
\angle A Q P=\angle A Q L=\angle A M L=\angle A O P .
$$

But $P O=Q O$ ，so $\angle P A O=\angle Q A O$ ．
－Second solution by inversion． $\mathrm{A} \sqrt{b c}$ inversion swaps Γ and line $B C$ ．However，it also preserves line $A O$ ，since $\angle B A O=\angle C A O$ ．This is enough to imply that the circle (O) is preserved（not the point O itself），since its center remains on the $\angle A$－bisector，and it remains tangent to both Γ and line $B C$ ．

Thus，P and Q are swapped by $\sqrt{b c}$ inversion，as needed．

§4i Vietnam TST 2003／2

Let $A B C$ be a scalene triangle，and denote by O and I the circumcenter and incenter． Let A_{0} be the midpoint of the A－altitude，and define B_{0} and C_{0} similarly．Suppose the incircle is tangent to the sides $B C, C A, A B$ at points D, E, F ．Prove that lines $A_{0} D$ ， $B_{0} E, C_{0} F$ are concurrent with line $O I$ ．

Let I_{A}, I_{B}, I_{C} be the excenters of the triangle．It＇s known that $I_{A} D$ passes through the midpoint A_{0} ，and thus we can consider the problem in terms of this triangle instead．

Let L be the circumcenter of $I_{A} I_{B} I_{C}$ ．Note that $D E F$ and $I_{A} I_{B} I_{C}$ are homothetic， since $\overline{E F}$ and $\overline{I_{B} I_{C}}$ are both perpendicular to the A－bisector．Therefore，the lines $D I_{A}$ ， $E I_{B}, F I_{C}$ concur at a single point X ．Moreover，X, I, L are collinear．（In fact X is the exsimilicenter of the circumcircles．）

It remains to show I, O, L are collinear，but this follows by noting that they are the orthocenter，nine－point center，and circumcenter of triangle $I_{A} I_{B} I_{C}$ ，respectively．

§4j Sharygin 2013／16

The incircle of $\triangle A B C$ touches $\overline{B C}, \overline{C A}, \overline{A B}$ at points A^{\prime}, B^{\prime} and C^{\prime} respectively．The perpendicular from the incenter I to the C－median meets the line $A^{\prime} B^{\prime}$ in point K ．Prove that $\overline{C K} \| \overline{A B}$ ．

Let ω be the circumcircle of $\triangle A^{\prime} B^{\prime} C$ and let K^{\prime} be the intersection of line $A^{\prime} B^{\prime}$ with the line through C parallel to $A B$ ．Furthermore，let Z be the foot of the perpendicular from I to $C M$ and observe that $Z \in \omega$ ．It suffices to prove that $\angle K^{\prime} Z L$ is right，because this will imply $K^{\prime}=K$ ．

Let P_{∞} be the point at infinity on line $A B$ ．Then the quadruple $\left(A, B ; M, P_{\infty}\right)$ is clearly harmonic．Taking perspectivity from C onto line $A^{\prime} B^{\prime}$ we observe that（ $B^{\prime}, A^{\prime} ; L, K^{\prime}$ ）is harmonic．
Now consider point Z ．Observe that $Z L$ is an angle bisector of $\angle B Z A^{\prime}$ ，since $B^{\prime} C=$ $A^{\prime} C$ implies the arcs $B^{\prime} C$ and $A^{\prime} C$ are equal．Since we have a harmonic bundle，we conclude that $L Z \perp K^{\prime} Z$ as desired．

§4k APMO 2012／4

Let $A B C$ be an acute triangle．Denote by D the foot of the A－altitude，by M the midpoint of $B C$ ，and by H the orthocenter of triangle $A B C$ ．Ray $M H$ meets the circumcircle Γ of triangle $A B C$ again at E ．Line $E D$ meets Γ again at F ．Prove that

$$
\frac{B F}{C F}=\frac{A B}{A C} .
$$

（Available online at https：／／aops．com／community／p2648114．）

The conclusion is a contrived way of saying：
Claim－$\overline{A F}$ is the A－symmedian of $\triangle A B C$ ．

Proof of main claim．It＇s well known that $\angle A E M=90^{\circ}$ ，since the second internsection of $\overline{E H M}$ is the A－antipode．That means $M D E A$ is cyclic．

Now，

$$
\begin{aligned}
\measuredangle B A F=\measuredangle B E F & =\measuredangle E B C+\measuredangle B D E=\measuredangle E B C-\measuredangle E D M \\
& =\measuredangle E A C-\measuredangle E A M=\measuredangle M A C .
\end{aligned}
$$

§4। Shortlist 2002 G7

The incircle Ω of the acute－angled triangle $A B C$ is tangent to its side $B C$ at a point K ．Let $\overline{A D}$ be an altitude of triangle $A B C$ ，and let M be the midpoint of $\overline{A D}$ ．If N is the common point of the circle Ω and $\overline{K M}$（distinct from K ），then prove Ω and the circumcircle of triangle $B C N$ are tangent to each other．
（Available online at https：／／aops．com／community／p118682．）

We present three solutions，two synthetic and one harmonic．
－First solution（from EGMO）．Let I_{A} be the A－excenter tangent to line $B C$ at T ． Define P to be the midpoint of $\overline{K I_{A}}$ ．Let r be the radius of the incircle and r_{a} the radius of the A－excircle．

It is well－known that M, K and I_{A} are collinear．We claim that $N B P C$ is cyclic；it suffices to prove that $2 B K \cdot K C=2 K P \cdot K N=K N \cdot K I_{A}$ ．On the other hand，by Power of a Point we have that

$$
I_{A} K\left(I_{A} K+K N\right)=I I_{A}^{2}-r^{2} \Longrightarrow K N \cdot K I_{A}=I I_{A}^{2}-r^{2}-I_{A} K^{2}
$$

Now we need only simplify the right－hand side using the Pythagorean Theorem；it is

$$
\left(\left(r+r_{a}\right)^{2}+K T^{2}\right)-r^{2}-\left(r_{a}^{2}+K T^{2}\right)=2 r r_{a}
$$

So it suffices to prove $r r_{a}=(s-b)(s-c)$ ，which is not hard．
Now，since P is the midpoint of minor arc $\widehat{B C}$ of $(N B C)$（via $B K=C T$ ），while the incircle is tangent to segment $B C$ at K ，the conclusion follows readily．

IT Second solution using power of a point（Haroon Khan）．Define P as the midpoint of $\overline{K I_{A}}$ as before．As noted already，N, M, K, P, I_{A} are collinear．

Claim－We have

$$
P B^{2}=P K \cdot P N=P C^{2}
$$

or equivalently that P is the radical center of $(I),(B),(C)$（the latter two circles having radius zero）．

Proof．Consider the K－midline of $\triangle K B I_{A}$ ，which we denote ℓ ．We claim it is the radical axis of (B) and (I) ．Indeed，$\ell \| \overline{B I_{A}} \perp \overline{B I}$ ，and the midpoint of $\overline{B K}$ clearly lies on this radical axis，as needed．

So P lies on the radical axis of (B) and (I) ；symmetrically it lies on the radical axis of (C) and（I），done．

This implies P is the arc midpoint of $\widehat{B C}$ in $(B C N)$ ．Since the incircle is tangent to $\overline{B C}$ at K ，it follows that N is the common tangency point requested．
－Third solution（harmonic）．As before it would be sufficient to show that $\angle B N C$ is bisected by $\overline{N K}$ ．Let L be the antipode of K on the incircle and let G be the second intersection of $\overline{A K}$ with the incircle．Moreover let E and F be the contact points of the incircle on $\overline{A C}, \overline{A B}$ ．

Note that：
－$G F E K$ is harmonic，since $\overline{A F}$ and $\overline{A E}$ are tangent．
－$G N K L$ is harmonic，if ∞ is the infinity point on $\overline{A D}$ then $-1=(A D ; M \infty) \stackrel{K}{=}$ （ $G K ; N L$ ）．

Thus lines $L N, E F, B C$ concur at $T=\overline{G G} \cap \overline{K K}$ ，the pole of $\overline{A G K}$ with respect to the incircle．

Moreover $(T K ; B C)=-1$ ，and so since $\angle L K N=90^{\circ}$ we get the desired bisection．

5
 Solutions for Computational Geometry

We both know we don't want to be here, so let's get this over with.

Xiaoyu He, during a MOP 2013 test review

§5a EGMO 2013/1

The side $B C$ of the triangle $A B C$ is extended beyond C to D so that $C D=B C$. The side $C A$ is extended beyond A to E so that $A E=2 C A$. Prove that if $A D=B E$ then the triangle $A B C$ is right-angled.
(Available online at https://aops.com/community/p3013167.)

Let ray $D A$ meet $\overline{B E}$ at M. Consider the triangle $E B D$. Since the point lies on median $\overline{E C}$, and $E A=2 A C$, it follows that A is the centroid of $\triangle E B D$.

So M is the midpoint of $\overline{B E}$. Moreover $M A=\frac{1}{2} A D=\frac{1}{2} B E$; so $M A=M B=M E$ and hence $\triangle A B E$ is inscribed in a circle with diameter $\overline{B E}$. Thus $\angle B A E=90^{\circ}$, so $\angle B A C=90^{\circ}$.

§5b USAMO 2010/4

Let $A B C$ be a triangle with $\angle A=90^{\circ}$. Points D and E lie on sides $A C$ and $A B$, respectively, such that $\angle A B D=\angle D B C$ and $\angle A C E=\angle E C B$. Segments $B D$ and $C E$ meet at I. Determine whether or not it is possible for segments $A B, A C, B I, I D, C I$, $I E$ to all have integer lengths.
(Available online at https://aops.com/community/p1860753.)

The answer is no. We prove that it is not even possible that $A B, A C, C I, I B$ are all integers.

First，we claim that $\angle B I C=135^{\circ}$ ．To see why，note that

$$
\angle I B C+\angle I C B=\frac{\angle B}{2}+\frac{\angle C}{2}=\frac{90^{\circ}}{2}=45^{\circ} .
$$

So，$\angle B I C=180^{\circ}-(\angle I B C+\angle I C B)=135^{\circ}$ ，as desired．
We now proceed by contradiction．The Pythagorean theorem implies

$$
B C^{2}=A B^{2}+A C^{2}
$$

and so $B C^{2}$ is an integer．However，the law of cosines gives

$$
\begin{aligned}
B C^{2} & =B I^{2}+C I^{2}-2 B I \cdot C I \cos \angle B I C \\
& =B I^{2}+C I^{2}+B I \cdot C I \cdot \sqrt{2}
\end{aligned}
$$

which is irrational，and this produces the desired contradiction．

§5c IMO 2007／4

In triangle $A B C$ the bisector of $\angle B C A$ meets the circumcircle again at R ，the perpen－ dicular bisector of $\overline{B C}$ at P ，and the perpendicular bisector of $\overline{A C}$ at Q ．The midpoint of $\overline{B C}$ is K and the midpoint of $\overline{A C}$ is L ．Prove that the triangles $R P K$ and $R Q L$ have the same area．
（Available online at https：／／aops．com／community／p894655．）

We first begin by proving the following claim．
Claim－We have $C Q=P R$（equivalently，$C P=Q R$ ）．
Proof．Let $O=\overline{L Q} \cap \overline{K P}$ be the circumcenter．Then

$$
\measuredangle O P Q=\measuredangle K P C=90^{\circ}-\measuredangle P C K=90^{\circ}-\measuredangle L C Q=\measuredangle \measuredangle C Q L=\measuredangle P Q O .
$$

Thus $O P=O Q$ ．Since $O C=O R$ as well，we get the conclusion．
Denote by X and Y the feet from R to $\overline{C A}$ and $\overline{C B}$ ，so $\triangle C X R \cong \triangle C Y R$ ．Then，let $t=\frac{C Q}{C R}=1-\frac{C P}{C R}$ ．

Then it follows that

$$
[R Q L]=[X Q L]=t(1-t) \cdot[X R C]=t(1-t) \cdot[Y C R]=[Y K P]=[R K P]
$$

as needed．
Remark．Trigonometric approaches are very possible（and easier to find）as well：both areas work out to be $\frac{1}{8} a b \tan \frac{1}{2} C$ ．

§5d JMO 2013／5

Quadrilateral $X A B Y$ is inscribed in the semicircle ω with diameter $\overline{X Y}$ ．Segments $A Y$ and $B X$ meet at P ．Point Z is the foot of the perpendicular from P to line $\overline{X Y}$ ．Point C lies on ω such that line $X C$ is perpendicular to line $A Z$ ．Let Q be the intersection of segments $A Y$ and $X C$ ．Prove that

$$
\frac{B Y}{X P}+\frac{C Y}{X Q}=\frac{A Y}{A X} .
$$

（Available online at https：／／aops．com／community／p3043750．）

Let $\beta=\angle Y X P$ and $\alpha=\angle P Y X$ and set $X Y=1$ ．We do not direct angles in the following solution．

Observe that

$$
\angle A Z X=\angle A P X=\alpha+\beta
$$

since $A P Z X$ is cyclic．In particular，$\angle C X Y=90^{\circ}-(\alpha+\beta)$ ．It is immediate that

$$
B Y=\sin \beta, \quad C Y=\cos (\alpha+\beta), \quad A Y=\cos \alpha, \quad A X=\sin \alpha
$$

The Law of Sines on $\triangle X P Y$ gives $X P=X Y \frac{\sin \alpha}{\sin (\alpha+\beta)}$ ，and on $\triangle X Q Y$ gives $X Q=$ $X Y \frac{\sin \alpha}{\sin (90+\beta)}=\frac{\sin \alpha}{\cos \beta}$ ．So，the given is equivalent to

$$
\frac{\sin \beta}{\frac{\sin \alpha}{\sin (\alpha+\beta)}}+\frac{\cos (\alpha+\beta)}{\frac{\sin \alpha}{\cos \beta}}=\frac{\cos \alpha}{\sin \alpha}
$$

which is equivalent to $\cos \alpha=\cos \beta \cos (\alpha+\beta)+\sin \beta \sin (\alpha+\beta)$ ．This is obvious，because the right－hand side is just $\cos ((\alpha+\beta)-\beta)$ ．

§5e CGMO 2007／5

Point D lies inside triangle $A B C$ such that $\angle D A C=\angle D C A=30^{\circ}$ and $\angle D B A=60^{\circ}$ ． Point E is the midpoint of segment $B C$ ．Point F lies on segment $A C$ with $A F=2 F C$ ． Prove that $\overline{D E} \perp \overline{E F}$ ．
（Available online at https：／／aops．com／community／p1358815．）

Without loss of generality，$A C=3$ ；thus $A D=D C=\sqrt{3}$ ，and $D F=C F=1$ ．Let O be the circumcenter of triangle $B A D$ ．

We have $\overline{O D} \| \overline{F C}$ since $\angle O D A=30^{\circ}=\angle D A F$ ，and $O D=A D / \sqrt{3}=1=C F$ ．So $O D C F$ is a parallelogram，so diagonals $\overline{D F}$ and $\overline{O C}$ bisect each other say at K ．Then $D K=K F=\frac{1}{2}$ ．

But，$E K=\frac{1}{2} B O=\frac{1}{2} O D=\frac{1}{2}$ too．Thus from $K D=K E=K F$ we conclude the desired result．

§5f Shortlist 2011 G1

Let $A B C$ be an acute triangle．Let ω be a circle whose center L lies on the side $B C$ ． Suppose that ω is tangent to $A B$ at B^{\prime} and $A C$ at C^{\prime} ．Suppose also that the circumcenter O of triangle $A B C$ lies on the shorter arc $B^{\prime} C^{\prime}$ of ω ．Prove that the circumcircle of $A B C$ and ω meet at two points．
（Available online at https：／／aops．com／community／p2739318．）

First，use the fact that

$$
90^{\circ}+\frac{1}{2} \angle A=\angle B^{\prime} O C^{\prime}>\angle B O C=2 \angle A
$$

to obtain $\angle A<60^{\circ}$ ．
Now M be the midpoint of $B C$ ．Then

$$
O L \geq O M=R \cos A>R / 2
$$

so we are done．

§5g IMO 2001／1

Let $A B C$ be an acute－angled triangle with O as its circumcenter．Let P on line $B C$ be the foot of the altitude from A ．Assume that $\angle B C A \geq \angle A B C+30^{\circ}$ ．Prove that $\angle C A B+\angle C O P<90^{\circ}$ ．
（Available online at https：／／aops．com／community／p119192．）

The conclusion rewrites as

$$
\begin{gathered}
\angle C O P<90^{\circ}-\angle A=\angle O C P \\
\Longleftrightarrow P C<P O \\
\Longleftrightarrow P C^{2}<P O^{2} \\
\Longleftrightarrow P C^{2}<R^{2}-P B \cdot P C \\
\Longleftrightarrow P C \cdot B C<R^{2} \\
\Longleftrightarrow \\
\Longleftrightarrow \operatorname{ain} \cos C<R^{2} \\
A \sin B \cos C<\frac{1}{4} .
\end{gathered}
$$

Now

$$
\cos C \sin B=\frac{1}{2}(\sin (C+B)-\sin (C-B)) \leq \frac{1}{2}\left(1-\frac{1}{2}\right)=\frac{1}{4}
$$

which finishes when combined with $\sin A<1$ ．
Remark．If we allow $A B C$ to be right then equality holds when $\angle A=90^{\circ}, \angle C=60^{\circ}$ ， $\angle B=30^{\circ}$ ．This motivates the choice of estimates after reducing to a trig inequality．

§5h IMO 2001／5

Let $A B C$ be a triangle．Let $\overline{A P}$ bisect $\angle B A C$ and let $\overline{B Q}$ bisect $\angle A B C$ ，with P on $\overline{B C}$ and Q on $\overline{A C}$ ．If $A B+B P=A Q+Q B$ and $\angle B A C=60^{\circ}$ ，what are the angles of the triangle？
（Available online at https：／／aops．com／community／p119207．）

The answer is $\angle B=80^{\circ}$ and $\angle C=40^{\circ}$ ．Set $x=\angle A B Q=\angle Q B C$ ，so that $\angle Q C B=$ $120^{\circ}-2 x$ ．We observe $\angle A Q B=120^{\circ}-x$ and $\angle A P B=150^{\circ}-2 x$ ．

Now by the law of sines，we may compute

$$
\begin{aligned}
B P & =A B \cdot \frac{\sin 30^{\circ}}{\sin \left(150^{\circ}-2 x\right)} \\
A Q & =A B \cdot \frac{\sin x}{\sin \left(120^{\circ}-x\right)} \\
Q B & =A B \cdot \frac{\sin 60^{\circ}}{\sin \left(120^{\circ}-x\right)}
\end{aligned}
$$

So，the relation $A B+B P=A Q+Q B$ is exactly

$$
1+\frac{\sin 30^{\circ}}{\sin \left(150^{\circ}-2 x\right)}=\frac{\sin x+\sin 60^{\circ}}{\sin \left(120^{\circ}-x\right)}
$$

This is now a trig problem，and we simply solve for x ．There are many possible approaches and we just present one．

First of all，we can write

$$
\sin x+\sin 60^{\circ}=2 \sin \left(\frac{1}{2}\left(x+60^{\circ}\right)\right) \cos \left(\frac{1}{2}\left(x-60^{\circ}\right)\right) .
$$

On the other hand， $\sin \left(120^{\circ}-x\right)=\sin \left(x+60^{\circ}\right)$ and

$$
\sin \left(x+60^{\circ}\right)=2 \sin \left(\frac{1}{2}\left(x+60^{\circ}\right)\right) \cos \left(\frac{1}{2}\left(x+60^{\circ}\right)\right)
$$

so

$$
\frac{\sin x+\sin 60^{\circ}}{\sin \left(120^{\circ}-x\right)}=\frac{\cos \left(\frac{1}{2} x-30^{\circ}\right)}{\cos \left(\frac{1}{2} x+30^{\circ}\right)}
$$

Let $y=\frac{1}{2} x$ for brevity now．Then

$$
\begin{aligned}
\frac{\cos \left(y-30^{\circ}\right)}{\cos \left(y+30^{\circ}\right)}-1 & =\frac{\cos \left(y-30^{\circ}\right)-\cos \left(y+30^{\circ}\right)}{\cos \left(y+30^{\circ}\right)} \\
& =\frac{2 \sin \left(30^{\circ}\right) \sin y}{\cos \left(y+30^{\circ}\right)} \\
& =\frac{\sin y}{\cos \left(y+30^{\circ}\right)}
\end{aligned}
$$

Hence the problem is just

$$
\frac{\sin 30^{\circ}}{\sin \left(150^{\circ}-4 y\right)}=\frac{\sin y}{\cos \left(y+30^{\circ}\right)}
$$

Equivalently，

$$
\begin{aligned}
\cos \left(y+30^{\circ}\right) & =2 \sin y \sin \left(150^{\circ}-4 y\right) \\
& =\cos \left(5 y-150^{\circ}\right)-\cos \left(150^{\circ}-3 y\right) \\
& =-\cos \left(5 y+30^{\circ}\right)+\cos \left(3 y+30^{\circ}\right) .
\end{aligned}
$$

Now we are home free，because $3 y+30^{\circ}$ is the average of $y+30^{\circ}$ and $5 y+30^{\circ}$ ．That means we can write

$$
\frac{\cos \left(y+30^{\circ}\right)+\cos \left(5 y+30^{\circ}\right)}{2}=\cos \left(3 y+30^{\circ}\right) \cos (2 y)
$$

Hence

$$
\cos \left(3 y+30^{\circ}\right)(2 \cos (2 y)-1)=0 .
$$

Recall that

$$
y=\frac{1}{2} x=\frac{1}{4} \angle B<\frac{1}{4}\left(180^{\circ}-\angle A\right)=30^{\circ} .
$$

Hence it is not possible that $\cos (2 y)=\frac{1}{2}$ ，since the smallest positive value of y that satisfies this is $y=30^{\circ}$ ．So $\cos \left(3 y+30^{\circ}\right)=0$ ．

The only permissible value of y is then $y=20^{\circ}$ ，giving $\angle B=80^{\circ}$ and $\angle C=40^{\circ}$ ．

§5i IMO 2001／6

Let $a>b>c>d>0$ be integers satisfying

$$
a c+b d=(b+d+a-c)(b+d-a+c) .
$$

Prove that $a b+c d$ is not prime．
（Available online at https：／／aops．com／community／p119217．）

The problem condition is equivalent to

$$
a c+b d=(b+d)^{2}-(a-c)^{2}
$$

or

$$
a^{2}-a c+c^{2}=b^{2}+b d+d^{2} .
$$

Let us construct a quadrilateral $W X Y Z$ such that $W X=a, X Y=c, Y Z=b$ ， $Z W=d$ ，and

$$
W Y=\sqrt{a^{2}-a c+c^{2}}=\sqrt{b^{2}+b d+d^{2}} .
$$

Then by the law of cosines，we obtain $\angle W X Y=60^{\circ}$ and $\angle W Z Y=120^{\circ}$ ．Hence this quadrilateral is cyclic．

By the more precise version of Ptolemy＇s theorem，we find that

$$
W Y^{2}=\frac{(a b+c d)(a d+b c)}{a c+b d}
$$

Now assume for contradiction that that $a b+c d$ is a prime p ．Recall that we assumed $a>b>c>d$ ．It follows，for example by rearrangement inequality，that

$$
p=a b+c d>a c+b d>a d+b c .
$$

Let $y=a c+b d$ and $x=a d+b c$ now．The point is that

$$
p \cdot \frac{x}{y}
$$

can never be an integer if p is prime and $x<y<p$ ．But $W Y^{2}=a^{2}-a c+c^{2}$ is clearly an integer，and this is a contradiction．

Hence $a b+c d$ cannot be prime．
Remark．It may be tempting to try to apply the more typical form of Ptolemy to get $a b+c d=W Y \cdot X Z$ ；the issue with this approach is that $W Y$ and $X Z$ are usually not integers．

6 Solutions for Complex Numbers

The real fun of living wisely is that you get to be smug about it.

Hobbes, in Calvin and Hobbes

§6a USAMO 2015/2

Quadrilateral $A P B Q$ is inscribed in circle ω with $\angle P=\angle Q=90^{\circ}$ and $A P=A Q<B P$. Let X be a variable point on segment $\overline{P Q}$. Line $A X$ meets ω again at S (other than A). Point T lies on arc $A Q B$ of ω such that $\overline{X T}$ is perpendicular to $\overline{A X}$. Let M denote the midpoint of chord $\overline{S T}$.

As X varies on segment $\overline{P Q}$, show that M moves along a circle.
(Available online at https://aops.com/community/p4769957.)

We present three solutions, one by complex numbers, two more synthetic. (A fourth solution using median formulas is also possible.) Most solutions will prove that the center of the fixed circle is the midpoint of $\overline{A O}$ (with O the center of ω); this can be recovered empirically by letting

- X approach P (giving the midpoint of $\overline{B P}$)
- X approach Q (giving the point Q), and
- X at the midpoint of $\overline{P Q}$ (giving the midpoint of $\overline{B Q}$)
which determines the circle; this circle then passes through P by symmetry and we can find the center by taking the intersection of two perpendicular bisectors (which two?).

ๆ Complex solution (Evan Chen). Toss on the complex unit circle with $a=-1, b=1$, $z=-\frac{1}{2}$. Let s and t be on the unit circle. We claim Z is the center.

It follows from standard formulas that

$$
x=\frac{1}{2}(s+t-1+s / t)
$$

thus

$$
4 \operatorname{Re} x+2=s+t+\frac{1}{s}+\frac{1}{t}+\frac{s}{t}+\frac{t}{s}
$$

which depends only on P and Q, and not on X. Thus

$$
4\left|z-\frac{s+t}{2}\right|^{2}=|s+t+1|^{2}=3+(4 \operatorname{Re} x+2)
$$

does not depend on X, done.

【 Homothety solution（Alex Whatley）．Let G, N, O denote the centroid，nine－point center，and circumcenter of triangle $A S T$ ，respectively．Let Y denote the midpoint of $\overline{A S}$ ．Then the three points X, Y, M lie on the nine－point circle of triangle $A S T$ ，which is centered at N and has radius $\frac{1}{2} A O$ ．

Let R denote the radius of ω ．Note that the nine－point circle of $\triangle A S T$ has radius equal to $\frac{1}{2} R$ ，and hence is independent of S and T ．Then the power of A with respect to the nine－point circle equals

$$
A N^{2}-\left(\frac{1}{2} R\right)^{2}=A X \cdot A Y=\frac{1}{2} A X \cdot A S=\frac{1}{2} A Q^{2}
$$

and hence

$$
A N^{2}=\left(\frac{1}{2} R\right)^{2}+\frac{1}{2} A Q^{2}
$$

which does not depend on the choice of X ．So N moves along a circle centered at A ．
Since the points O, G, N are collinear on the Euler line of $\triangle A S T$ with

$$
G O=\frac{2}{3} N O
$$

it follows by homothety that G moves along a circle as well，whose center is situated one－third of the way from A to O ．Finally，since A, G, M are collinear with

$$
A M=\frac{3}{2} A G
$$

it follows that M moves along a circle centered at the midpoint of $\overline{A O}$ ．
【 Power of a point solution（Zuming Feng，official solution）．We complete the picture by letting $\triangle K Y X$ be the orthic triangle of $\triangle A S T$ ；in that case line $X Y$ meets the ω again at P and Q ．

The main claim is：
Claim－Quadrilateral $P Q K M$ is cyclic．
Proof．To see this，we use power of a point：let $V=\overline{Q X Y P} \cap \overline{S K M T}$ ．One approach is that since $(V K ; S T)=-1$ we have $V Q \cdot V P=V S \cdot V T=V K \cdot V M$ ．A longer approach is more elementary：

$$
V Q \cdot V P=V S \cdot V T=V X \cdot V Y=V K \cdot V M
$$

using the nine－point circle，and the circle with diameter $\overline{S T}$ ．
But the circumcenter of $P Q K M$ ，is the midpoint of $\overline{A O}$ ，since it lies on the perpendicular bisectors of $\overline{K M}$ and $\overline{P Q}$ ．So it is fixed，the end．

§6b China TST 2006／4／1

Let H be the orthocenter of triangle $A B C$ ．Let D, E, F lie on the circumcircle of $A B C$ such that $\overline{A D}\|\overline{B E}\| \overline{C F}$ ．Let S, T, U respectively denote the reflections of D, E, F across $\overline{B C}, \overline{C A}, \overline{A B}$ ．Prove that points S, T, U, H are concyclic．
（Available online at https：／／aops．com／community／p550632．）

Let $(A B C)$ be the unit circle and $h=a+b+c$ ．WLOG，$\overline{A D}, \overline{B E}, \overline{C F}$ are perpendicular to the real axis（rotate appropriately）；thus $d=\bar{a}$ and so on．

Thus $s=b+c-b c \bar{d}=b+c-a b c$ and so on；we now have

$$
\frac{s-t}{s-u}=\frac{b-a}{c-a} \quad \text { and } \quad \frac{h-t}{h-u}=\frac{b+a b c}{c+a b c} .
$$

Compute

$$
\frac{s-t}{s-u}: \frac{h-t}{h-u}=\frac{(b-a)(c+a b c)}{(c-a)(b+a b c)}=\frac{\left(\frac{1}{b}-\frac{1}{a}\right)\left(\frac{1}{c}+\frac{1}{a b c}\right)}{\left(\frac{1}{c}-\frac{1}{a}\right)\left(\frac{1}{b}+\frac{1}{a b c}\right)}
$$

and thus

$$
\frac{s-t}{s-u}: \frac{h-t}{h-u} \in \mathbb{R}
$$

as desired．

Remark．In fact，the problem remains true if the all－parallel condition is replaced by $\overline{A D}$ ， $\overline{B E}, \overline{C F}$ merely being concurrent at some point．The calculation in this case is more involved though．

§6c USA TST 2014／5

Let $A B C D$ be a cyclic quadrilateral，and let E, F, G ，and H be the midpoints of $A B$ ， $B C, C D$ ，and $D A$ respectively．Let W, X, Y and Z be the orthocenters of triangles $A H E, B E F, C F G$ and $D G H$ ，respectively．Prove that the quadrilaterals $A B C D$ and $W X Y Z$ have the same area．
（Available online at https：／／aops．com／community／p3476291．）

The following solution is due to Grace Wang．
We begin with：
Claim－Point W has coordinates $\frac{1}{2}(2 a+b+d)$ ．

Proof．The orthocenter of $\triangle D A B$ is $d+a+b$ ，and $\triangle A H E$ is homothetic to $\triangle D A B$ through A with ratio $1 / 2$ ．Hence $w=\frac{1}{2}(a+(d+a+b))$ as needed．

By symmetry，we have

$$
\begin{aligned}
w & =\frac{1}{2}(2 a+b+d) \\
x & =\frac{1}{2}(2 b+c+a) \\
y & =\frac{1}{2}(2 c+d+b) \\
z & =\frac{1}{2}(2 d+a+c) .
\end{aligned}
$$

We see that $w-y=a-c, x-z=b-d$ ．So the diagonals of $W X Y Z$ have the same length as those of $A B C D$ as well as the same directed angle between them．This implies the areas are equal，too．

§6d OMO 2013 F26

Let $A B C$ be an acute triangle with circumcenter O ．Denote the reflections of B and C across $\overline{A C}, \overline{A B}$ by D, E ，respectively．Let P be a point such that $\triangle D P O \sim \triangle P E O$ with the same orientation，and let X and Y be the midpoints of the major and minor arcs $\widehat{B C}$ of the circumcircle of triangle $A B C$ ．Calculate $P X \cdot P Y$ in terms of the side lengths of $A B C$ ．
（Available online at https：／／aops．com／community／p3261431．）

We will prove that

$$
P X \cdot P Y=B C^{2}
$$

We apply complex numbers with $(A B C)$ the unit circle．Observe that $x+y=0$ and $x y+b c=0$ ．Moreover，the condition $\triangle D P O \sim \triangle P E O$ is just

$$
\frac{d-p}{p-0}=\frac{p-e}{e-0} \Longleftrightarrow p^{2}-p e=d e-p e \Longleftrightarrow p^{2}=d e
$$

Now we can compute

$$
\begin{aligned}
(P X \cdot P Y)^{2} & =|p-x|^{2}|p-y|^{2} \\
& =(p-x)(\bar{p}-\bar{x})(p-y)(\bar{p}-\bar{y}) \\
& =\left(p^{2}-(x+y) p+x y\right)\left(\bar{p}^{2}-(\bar{x}+\bar{y}) \bar{p}+\overline{x y}\right) \\
& =\left(p^{2}+x y\right)\left(\bar{p}^{2}+\overline{x y}\right) \\
& =(d e-b c)(\overline{d e}-\overline{b c}) \\
& =|d e-b c|^{2} .
\end{aligned}
$$

Thus $P X \cdot P Y=|d e-b c|$ ．Now

$$
d=a+c-\frac{a c}{b}, \quad e=a+b-\frac{a b}{c} .
$$

Therefore，

$$
\begin{aligned}
d e & =\left(a+c-\frac{a c}{b}\right)\left(a+b-\frac{a b}{c}\right) \\
& =a^{2}+a b+a c+b c-\frac{a^{2} c}{b}-a c-\frac{a^{2} b}{c}-a b+a^{2} \\
& =2 a^{2}-\frac{a^{2} c}{b}-\frac{a^{2} b}{c}+b c .
\end{aligned}
$$

Hence

$$
\begin{aligned}
P X \cdot P Y & =|d e-b c| \\
& =\left|2 a^{2}-\frac{a^{2} c}{b}-\frac{a^{2} b}{c}\right| \\
& =\left|-\frac{a^{2}}{b c}(b-c)^{2}\right| \\
& =\left|-\frac{a^{2}}{b c}\right||b-c|^{2} \\
& =B C^{2} .
\end{aligned}
$$

§6e IMO 2009／2

Let $A B C$ be a triangle with circumcenter O ．The points P and Q are interior points of the sides $C A$ and $A B$ respectively．Let K, L, M be the midpoints of $\overline{B P}, \overline{C Q}, \overline{P Q}$ ， respectively，and let Γ be the circumcircle of $\triangle K L M$ ．Suppose that $\overline{P Q}$ is tangent to Γ ． Prove that $O P=O Q$ ．
（Available online at https：／／aops．com／community／p1561572．）

By power of a point，we have $-A Q \cdot Q B=O Q^{2}-R^{2}$ and $-A P \cdot P C=O P^{2}-R^{2}$ ． Therefore，it suffices to show $A Q \cdot Q B=A P \cdot P C$ ．

As $\overline{M L} \| \overline{A C}$ and $\overline{M K} \| \overline{A B}$ we have that

$$
\begin{aligned}
& \measuredangle A P Q=\measuredangle L M P=\measuredangle L K M \\
& \measuredangle P Q A=\measuredangle K M Q=\measuredangle M L K
\end{aligned}
$$

and consequently we have the（opposite orientation）similarity

$$
\triangle A P Q \approx \triangle M K L .
$$

Therefore

$$
\frac{A Q}{A P}=\frac{M L}{M K}=\frac{2 M L}{2 M K}=\frac{P C}{Q B}
$$

id est $A Q \cdot Q B=A P \cdot P C$ ，which is what we wanted to prove．

§6f APMO 2010／4

Let $A B C$ be an acute triangle with $A B>B C$ and $A C>B C$ ．Denote by O and H the circumcenter and orthocenter of $A B C$ ．Suppose that the circumcircle of triangle $A H C$ intersects the line $A B$ at M（other than A ），and the circumcircle of triangle $A H B$ intersects the line $A C$ at N（other than A ）．Prove that the circumcenter of triangle $M N H$ lies on line $O H$ ．
（Available online at https：／／aops．com／community／p1868946．）

Inversion solution：Perform a negative inversion at H mapping the circumcircle to the nine－point circle．Then look at $\triangle D E F$ ．

The problem reduces to the $\overline{D E} \perp \overline{I O}$ lemma（in the style of EGMO 2014／2）．
Complex numbers solution：Let $\overline{B E}$ and $\overline{C F}$ be altitudes of $\triangle A B C$ ．

First，we claim that M is the reflection of B over F ．Indeed，we have that

$$
\measuredangle B M H=\measuredangle A M H=\measuredangle A C H=\measuredangle E C F=\measuredangle E B F=\measuredangle H B M
$$

implying that $\triangle M H B$ is isosceles．As $\overline{H F} \perp \overline{M B}$ ，the conclusion follows．Similarly，we can see that N is the reflection of C over E ．

Now we can apply complex numbers with $(A B C)$ as the unit circle．Hence we have $f=\frac{1}{2}(a+b+c-a b \bar{c})$ ，and hence

$$
m=2 f-b=a+c-a b \bar{c} .
$$

Similarly，

$$
n=a+b-a c \bar{b} .
$$

Now we wish to compute the circumcenter X of $\triangle H M N$ ，where $h=a+b+c$ ．Let M^{\prime} be the point corresponding to $m-h=-b-a b \bar{c}$ and N^{\prime} be the point corresponding to $n-h=-c-a c \bar{b}$ ，noting that O corresponds to $h-h=0$ ．Then the circumcenter of $\triangle M^{\prime} N^{\prime} O$ corresponds to the point $x-h$ ．But we can compute the circumcenter of $\triangle M^{\prime} N^{\prime} O$ ；it is

$$
\begin{aligned}
x-h & =\frac{(m-h)(n-h)(\overline{(m-h)}-\overline{(n-h)})}{(m-h)}(n-h)-(m-h) \overline{(n-h)} \\
& =\frac{\left(-b-\frac{a b}{c}\right)\left(-c-\frac{a c}{b}\right)\left(\left(-\frac{1}{b}-\frac{c}{a b}\right)-\left(-\frac{1}{c}-\frac{b}{a c}\right)\right)}{\left(-\frac{1}{b}-\frac{c}{a b}\right)\left(-c-\frac{a c}{b}\right)-\left(-b-\frac{a b}{c}\right)\left(-\frac{1}{c}-\frac{b}{a c}\right)} \\
& =\frac{\left(b+\frac{a b}{c}\right)\left(c+\frac{a c}{b}\right)\left(\left(\frac{1}{b}+\frac{c}{a b}\right)-\left(\frac{1}{c}+\frac{b}{a c}\right)\right)}{\left(\frac{1}{b}+\frac{c}{a b}\right)\left(c+\frac{a c}{b}\right)-\left(b+\frac{a b}{c}\right)\left(\frac{1}{c}+\frac{b}{a c}\right)} .
\end{aligned}
$$

Multiplying the numerator and denominator by $a b^{2} c^{2}$ ，

$$
\begin{aligned}
x-h & =\frac{b c(a+b)(a+c)(c(a+c)-b(a+b))}{c^{3}(a+b)(a+c)-b^{3}(a+b)(a+c)} \\
& =\frac{b c\left(c^{2}-b^{2}+a(c-b)\right)}{c^{3}-b^{3}} \\
& =\frac{b c(c-b)(a+b+c)}{(c-b)\left(b^{2}+b c+c^{2}\right)} \\
& =\frac{b c(a+b+c)}{b^{2}+b c+c^{2}} .
\end{aligned}
$$

So

$$
x=h+\frac{b c(a+b+c)}{b^{2}+b c+c^{2}}=h\left[1+\frac{b c}{b^{2}+b c+c^{2}}\right] .
$$

Finally，to show X, H, O are collinear，we only need to prove $\frac{x}{h}=\frac{b c}{b^{2}+b c+c^{2}}+1$ is real．It is equivalent to show $\frac{b c}{b^{2}+b c+c^{2}}$ is real，but its conjugate is

$$
\overline{\left(\frac{b c}{b^{2}+b c+c^{2}}\right)}=\frac{\frac{1}{b c}}{\frac{1}{b^{2}}+\frac{1}{b c}+\frac{1}{c^{2}}}=\frac{b c}{b^{2}+b c+c^{2}}
$$

and the proof is complete．

§6g Shortlist 2006 G9

Points A_{1}, B_{1}, C_{1} are chosen on the sides $B C, C A, A B$ of a triangle $A B C$ respectively． The circumcircles of triangles $A B_{1} C_{1}, B C_{1} A_{1}, C A_{1} B_{1}$ intersect the circumcircle of triangle $A B C$ again at points A_{2}, B_{2}, C_{2} respectively $\left(A_{2} \neq A, B_{2} \neq B, C_{2} \neq C\right)$ ．Points A_{3}, B_{3}, C_{3} are symmetric to A_{1}, B_{1}, C_{1} with respect to the midpoints of the sides $B C$ ， $C A, A B$ respectively．Prove that the triangles $A_{2} B_{2} C_{2}$ and $A_{3} B_{3} C_{3}$ are similar．
（Available online at https：／／aops．com／community／p875036．）

We will prove the following claim，after which only angle chasing remains．
Claim－We have $\measuredangle A C_{3} B_{3}=\measuredangle A_{2} B C$.
Proof．By spiral similarity at A_{2} ，we deduce that $\triangle A_{2} C_{1} B \sim \triangle A_{2} B_{1} C$ ，hence

$$
\frac{A_{2} B}{A_{2} C}=\frac{C_{1} B}{B_{1} C}=\frac{A C_{3}}{A B_{3}} .
$$

It follows that

$$
\triangle A_{2} B C \sim \triangle A C_{3} B_{3}
$$

since we also have $\measuredangle B A_{2} C=\measuredangle B A C=\measuredangle C_{3} A B_{3}$ ．（Configuration issues：we can check that A_{2} lies on the same side of A as $\overline{B C}$ since B_{1} and C_{1} are constrained to lie on the sides of the triangle．So we can deduce $\angle C_{3} A B_{3}=\angle B A_{2} C$ ．）
Thus $\measuredangle A C_{3} B_{3}=\measuredangle A_{2} B C$ ，completing the proof．
Similarly，$\measuredangle B C_{3} A_{3}=\measuredangle B_{2} A C$
The rest is angle chasing；we have

$$
\begin{aligned}
\measuredangle A_{3} C_{3} B_{3} & =\measuredangle A_{3} C_{3} A+\measuredangle A C_{3} B_{3} \\
& =\measuredangle A_{3} C_{3} B+\measuredangle A C_{3} B_{3} \\
& =\measuredangle C A B_{2}+\measuredangle A_{2} B C \\
& =\measuredangle A_{2} C_{2} C+\measuredangle C C_{2} B_{2} \\
& =\measuredangle A_{2} C_{2} B_{2} .
\end{aligned}
$$

§6h MOP 2006／4／1

Given a cyclic quadrilateral $A B C D$ with circumcenter O and a point P on the plane， let $O_{1}, O_{2}, O_{3}, O_{4}$ denote the circumcenters of triangles $P A B, P B C, P C D, P D A$ respectively．Prove that the midpoints of segments $O_{1} O_{3}, O_{2} O_{4}$ ，and $O P$ are collinear．

We apply complex numbers with $(A B C D)$ as the unit circle．The problem is equivalent to proving that

$$
\frac{\frac{1}{2} p-\frac{1}{2}\left(o_{1}+o_{3}\right)}{\frac{1}{2} \bar{p}-\frac{1}{2}\left(\overline{o_{1}}+\overline{o_{3}}\right)}=\frac{\frac{1}{2} p-\frac{1}{2}\left(o_{2}+o_{4}\right)}{\frac{1}{2} \bar{p}-\frac{1}{2}\left(\overline{o_{2}}+\overline{o_{4}}\right)} .
$$

First，we compute

$$
\begin{aligned}
o_{1} & =\left|\begin{array}{ccc}
a & a \bar{a} & 1 \\
b & b \bar{b} & 1 \\
p & p \bar{p} & 1
\end{array}\right| \div\left|\begin{array}{ccc}
a & \bar{a} & 1 \\
b & \bar{b} & 1 \\
p & \bar{p} & 1
\end{array}\right| \\
& =\left|\begin{array}{ccc}
a & 1 & 1 \\
b & 1 & 1 \\
p & p \bar{p} & 1
\end{array}\right| \div\left|\begin{array}{ccc}
a & \frac{1}{a} & 1 \\
b & \frac{1}{b} & 1 \\
p & \bar{p} & 1
\end{array}\right| \\
& =\left|\begin{array}{ccc}
a & 0 & 1 \\
b & 0 & 1 \\
p & p \bar{p}-1 & 1
\end{array}\right| \div\left|\begin{array}{ccc}
a & \frac{1}{a} & 1 \\
b & \frac{1}{b} & 1 \\
p & \bar{p} & 1
\end{array}\right| \\
& =\frac{(p \bar{p}-1)(b-a)}{\frac{a}{b}-\frac{b}{a}+p\left(\frac{1}{a}-\frac{1}{b}\right)+\bar{p}(b-a)} \\
& =\frac{p \bar{p}-1}{\frac{p}{a b}+\bar{p}-\frac{a+b}{a b}} .
\end{aligned}
$$

The conjugate of this expression is easier to work with；we have

$$
\overline{o_{1}}=\frac{p \bar{p}-1}{a b \bar{p}+p-(a+b)} .
$$

Similarly，

$$
\overline{o_{3}}=\frac{p \bar{p}-1}{c d \bar{p}+p-(c+d)} .
$$

In what follows，we let $s_{1}=a+b+c+d, s_{2}=a b+b c+c d+d a+a c+b d, s_{3}=$ $a b c+b c d+c d a+d a b$ ，and $s_{4}=a b c d$ for brevity．Then，

$$
\begin{aligned}
& \overline{o_{1}}+\overline{o_{3}}-\bar{p} \\
= & (p \bar{p}-1)\left(\frac{1}{a b \bar{p}+p-(a+b)}+\frac{1}{c d \bar{p}+p-(c+d)}\right)-\bar{p} \\
= & \frac{(p \bar{p}-1)\left(2 p+(a b+c d) \bar{p}-s_{1}\right)}{(a b \bar{p}+p-(a+b))(c d \bar{p}+p-(c+d))}-\bar{p}
\end{aligned}
$$

Consider the fraction in the above expansion．One can check that the denominator expands as

$$
\mathcal{D}=s_{4} \bar{p}^{2}+(a b+c d) p \bar{p}+p^{2}-s_{3} \bar{p}-s_{1} p+(a c+a d+b c+b d) .
$$

On the other hand，the numerator is equal to

$$
\mathcal{N}=\left(2 p-s_{1}\right)(p \bar{p}-1)+(a b+c d) \bar{p}(p \bar{p}-1) .
$$

Thus，

$$
\overline{o_{1}}+\overline{o_{3}}-\bar{p}=\frac{\mathcal{N}-\bar{p} \mathcal{D}}{\mathcal{D}} .
$$

We claim that the expression $\mathcal{N}-\bar{p} \mathcal{D}$ is symmetric in a, b, c, d ．To see this，we need only look at the terms of \mathcal{N} and \mathcal{D} that are not symmetric in a, b, c, d ．These are $(a b+c d) \bar{p}(p \bar{p}-1)$ and $(a b+c d) p \bar{p}+(a c+a d+b d+b c)$ ，respectively．Subtracting \bar{p} times the latter from the former yields $-s_{2} \bar{p}$ ．Hence $\mathcal{N}-\bar{p} \mathcal{D}$ is symmetric in a, b, c, d ，as claimed．${ }^{1}$ Now we may set $\mathcal{S}=\mathcal{N}-\bar{p} \mathcal{D}$ ．

Thus

$$
\begin{aligned}
\frac{o_{1}+o_{3}-p}{\overline{o_{1}}+\overline{o_{3}}-\bar{p}} & =\frac{\overline{\mathcal{S}} / \overline{\mathcal{D}}}{\mathcal{S} / \mathcal{D}} \\
& =\frac{\overline{\mathcal{S}}}{\mathcal{S}} \cdot \frac{\mathcal{D}}{\overline{\mathcal{D}}} \\
& =\frac{\overline{\mathcal{S}}}{\mathcal{S}} \cdot \frac{(a b \bar{p}+p-(a+b))(c d \bar{p}+p-(c+d))}{\left(\frac{1}{a b} p+\bar{p}-\frac{1}{a}-\frac{1}{b}\right)\left(\frac{1}{c d} p+\bar{p}-\frac{1}{c}-\frac{1}{d}\right)} \\
& =\frac{\overline{\mathcal{S}}}{\mathcal{S}} \cdot a b c d .
\end{aligned}
$$

Hence，we deduce

$$
\frac{o_{1}+o_{3}-p}{\overline{o_{1}}+\overline{o_{3}}-\bar{p}}
$$

is in fact symmetric in a, b, c, d ．Hence if we repeat the same calculation with $\frac{o_{2}+o_{4}-p}{\bar{o}_{2}+\bar{o}_{4}-\bar{p}}$ ， we must obtain exactly the same result．This completes the solution．

§6i Shortlist 1998 G6

Let $A B C D E F$ be a convex hexagon such that $\angle B+\angle D+\angle F=360^{\circ}$ and

$$
\frac{A B}{B C} \cdot \frac{C D}{D E} \cdot \frac{E F}{F A}=1 .
$$

[^0]Prove that

$$
\frac{B C}{C A} \cdot \frac{A E}{E F} \cdot \frac{F D}{D B}=1 .
$$

（Available online at https：／／aops．com／community／p3488．）

We use complex numbers，since the condition in its given form is an abomination． Consider the quantity

$$
\frac{b-a}{f-a} \cdot \frac{d-c}{b-c} \cdot \frac{f-e}{d-e} .
$$

By the first condition，its argument is 360° ，so it is a positive real However，the second condition implies that it has norm 1 ．We deduce that it is actually equal to 1 ．

So，we are given that

$$
0=(a-b)(c-d)(e-f)+(b-c)(d-e)(f-a)
$$

and wish to show that

$$
|(b-c)(a-e)(f-d)|=|(c-a)(e-f)(d-b)| .
$$

But in fact one can check they are equal．

§6j ELMO SL 2013 G7

Let $A B C$ be a triangle inscribed in circle ω ，and let the medians from B and C intersect ω at D and E respectively．Let O_{1} be the center of the circle through D tangent to $\overline{A C}$ at C ，and let O_{2} be the center of the circle through E tangent to $\overline{A B}$ at B ．Prove that O_{1}, O_{2} ，and the nine－point center of $A B C$ are collinear．
（Available online at https：／／aops．com／community／p3151965．）

We use complex numbers with $(A B C)$ the unit circle．
To compute D ，note that since the midpoint of $\overline{A C}$ lies on chord $\overline{B D}$ ，we should have

$$
b+d=\frac{a+c}{2}+b d \cdot \frac{a+c}{2 a c} \Longrightarrow d=\frac{\frac{a+c}{2}-b}{1-\frac{b(a+c)}{2 a c}}=\frac{a c(a+c-2 b)}{2 a c-b(a+c)}
$$

We now seek to compute O_{1} ．Let O denote the circumcircle．Note that since $\triangle A O D \sim$ $\triangle D C O_{1}$ we have

$$
\frac{o_{1}-d}{c-d}=\frac{-d}{a-d}
$$

so

$$
\begin{aligned}
o_{1} & =\frac{d(a-d)-d(c-d)}{a-d}=\frac{d(a-c)}{a-d} \\
& =\frac{a c(a+c-2 b)(a-c)}{a(2 a c-b(a+c))-a c(a+c-2 b)} \\
& =\frac{c(a+c-2 b)(a-c)}{a c-a b+b c-c^{2}}=\frac{c(a+c-2 b)}{c-b} .
\end{aligned}
$$

Similarly $o_{2}=\frac{b(a+b-2 c)}{b-c}$ ．We now find that

$$
\frac{o_{1}+o_{2}}{2}=\frac{b(a+b-2 c)-c(a+c-2 b)}{2(b-c)}=\frac{a+b+c}{2}
$$

so in fact the nine－point center is the midpoint of O_{1} and O_{2} ．

7 Solutions for Barycentric Coordinates

I don't care if you're a devil in disguise! I love you all the same!

Misa Amane, in Death Note: The Last Name

§7a IMO 2014/4

Let P and Q be on segment $B C$ of an acute triangle $A B C$ such that $\angle P A B=\angle B C A$ and $\angle C A Q=\angle A B C$. Let M and N be points on $\overline{A P}$ and $\overline{A Q}$, respectively, such that P is the midpoint of $\overline{A M}$ and Q is the midpoint of $\overline{A N}$. Prove that $\overline{B M}$ and $\overline{C N}$ meet on the circumcircle of $\triangle A B C$.
(Available online at https://aops.com/community/p3543136.)

We give three solutions.
\| First solution by harmonic bundles. Let $\overline{B M}$ intersect the circumcircle again at X.

The angle conditions imply that the tangent to $(A B C)$ at B is parallel to $\overline{A P}$. Let ∞ be the point at infinity along line $A P$. Then

$$
-1=(A M ; P \infty) \stackrel{B}{=}(A X ; B C)
$$

Similarly, if $\overline{C N}$ meets the circumcircle at Y then $(A Y ; B C)=-1$ as well. Hence $X=Y$, which implies the problem.
－Second solution by similar triangles．Once one observes $\triangle C A Q \sim \triangle C B A$ ，one can construct D the reflection of B across A ，so that $\triangle C A N \sim \triangle C B D$ ．Similarly，letting E be the reflection of C across A ，we get $\triangle B A P \sim \triangle B C A \Longrightarrow \triangle B A M \sim \triangle B C E$ ．Now to show $\angle A B M+\angle A C N=180^{\circ}$ it suffices to show $\angle E B C+\angle B C D=180^{\circ}$ ，which follows since $B C D E$ is a parallelogram．

【 Third solution by barycentric coordinates．Since $P B=c^{2} / a$ we have

$$
P=\left(0: a^{2}-c^{2}: c^{2}\right)
$$

so the reflection $\vec{M}=2 \vec{P}-\vec{A}$ has coordinates

$$
M=\left(-a^{2}: 2\left(a^{2}-c^{2}\right): 2 c^{2}\right) .
$$

Similarly $N=\left(-a^{2}: 2 b^{2}: 2\left(b^{2}-a^{2}\right)\right)$ ．Thus

$$
\overline{B M} \cap \overline{C N}=\left(-a^{2}: 2 b^{2}: 2 c^{2}\right)
$$

which clearly lies on the circumcircle，and is in fact the point identified in the first solution．

§7b EGMO 2013／1

The side $B C$ of the triangle $A B C$ is extended beyond C to D so that $C D=B C$ ．The side $C A$ is extended beyond A to E so that $A E=2 C A$ ．Prove that if $A D=B E$ then the triangle $A B C$ is right－angled．
（Available online at https：／／aops．com／community／p3013167．）

Let ray $D A$ meet $\overline{B E}$ at M ．Consider the triangle $E B D$ ．Since the point lies on median $\overline{E C}$ ，and $E A=2 A C$ ，it follows that A is the centroid of $\triangle E B D$ ．

So M is the midpoint of $\overline{B E}$ ．Moreover $M A=\frac{1}{2} A D=\frac{1}{2} B E$ ；so $M A=M B=M E$ and hence $\triangle A B E$ is inscribed in a circle with diameter $\overline{B E}$ ．Thus $\angle B A E=90^{\circ}$ ，so $\angle B A C=90^{\circ}$ ．

§7c ELMO SL 2013 G3

In non－right triangle $A B C$ ，a point D lies on line $\overline{B C}$ ．The circumcircle of $A B D$ meets $\overline{A C}$ at F（other than A ），and the circumcircle of $A D C$ meets $\overline{A B}$ at E（other than A ）． Prove that as D varies，the circumcircle of $A E F$ always passes through a fixed point other than A ，and that this point lies on the median from A to $\overline{B C}$ ．
（Available online at https：／／aops．com／community／p3151962．）

After a $\sqrt{b c}$ inversion around A ，it suffices to prove that for variable D^{*} on $(A B C)$ ， the line through $E^{*}=\overline{B D^{*}} \cap \overline{A C}$ and $F^{*}=\overline{C D^{*}} \cap \overline{A B}$ passes through a fixed point on the A－symmedian．By Brokard＇s theorem this is the pole of $\overline{B C}$ ．

Alternatively，use barycentric coordinates with $A=(1,0,0)$ ，etc．Let $D=(0: m: n)$ with $m+n=1$ ．Then the circle $A B D$ has equation $-a^{2} y z-b^{2} z x-c^{2} x y+(x+y+$ $z)\left(a^{2} m \cdot z\right)$ ．To intersect it with side $A C$ ，put $y=0$ to get $(x+z)\left(a^{2} m z\right)=b^{2} z x \Longrightarrow$ $\frac{b^{2}}{a^{2} m} \cdot x=x+z \Longrightarrow\left(\frac{b^{2}}{a^{2} m}-1\right) x=z$ ，so

$$
F=\left(a^{2} m: 0: b^{2}-a^{2} m\right)
$$

Similarly，

$$
G=\left(a^{2} n: c^{2}-a^{2} n: 0\right) .
$$

Then，the circle $(A F G)$ has equation

$$
-a^{2} y z-b^{2} z x-c^{2} x y+a^{2}(x+y+z)(m y+n z)=0 .
$$

Upon picking $y=z=1$ ，we easily see there exists a t such that $(t: 1: 1)$ is on the circle， implying the conclusion．

One can also use trigonometry directly．Let M be the midpoint of $B C$ ．By power of a point，$c \cdot B E+b \cdot C F=a \cdot B D+a \cdot C D=a^{2}$ is constant．Fix a point D_{0} ；and let $P_{0}=A M \cap\left(A E_{0} F_{0}\right)$ ．For any other point D ，we have $\frac{E_{0} E}{F_{0} F}=\frac{b}{c}=\frac{\sin \angle B A M}{\sin \angle C A M}=\frac{P_{0} E_{0}}{P_{0} F_{0}}$ from the extended law of sines，so triangles $P_{0} E_{0} E$ and $P_{0} F_{0} F$ are directly similar，whence $A E P_{0} F$ is cyclic，as desired．

§7d IMO 2012／1

Given triangle $A B C$ the point J is the centre of the excircle opposite the vertex A ．This excircle is tangent to the side $B C$ at M ，and to the lines $A B$ and $A C$ at K and L ， respectively．The lines $L M$ and $B J$ meet at F ，and the lines $K M$ and $C J$ meet at G ． Let S be the point of intersection of the lines $A F$ and $B C$ ，and let T be the point of intersection of the lines $A G$ and $B C$ ．Prove that M is the midpoint of $S T$ ．
（Available online at https：／／aops．com／community／p2736397．）

We employ barycentric coordinates with reference $\triangle A B C$ ．As usual $a=B C, b=C A$ ， $c=A B, s=\frac{1}{2}(a+b+c)$ ．

It＇s obvious that $K=(-(s-c): s: 0), M=(0: s-b: s-c)$ ．Also，$J=(-a: b: c)$ ． We then obtain

$$
G=\left(-a: b: \frac{-a s+(s-c) b}{s-b}\right) .
$$

It follows that

$$
T=\left(0: b: \frac{-a s+(s-c)}{s-b}\right)=(0: b(s-b): b(s-c)-a s) .
$$

Normalizing，we see that $T=\left(0,-\frac{b}{a}, 1+\frac{b}{a}\right)$ ，from which we quickly obtain $M T=s$ ． Similarly，$M S=s$ ，so we＇re done．

§7e USA TST 2008／7

Let $A B C$ be a triangle with G as its centroid．Let P be a variable point on segment $B C$ ．Points Q and R lie on sides $A C$ and $A B$ respectively，such that $\overline{P Q} \| \overline{A B}$ and $\overline{P R} \| \overline{A C}$ ．Prove that，as P varies along segment $B C$ ，the circumcircle of triangle $A Q R$ passes through a fixed point X such that $\angle B A G=\angle C A X$ ．
（Available online at https：／／aops．com／community／p1247506．）

Let $P=(0, s, t)$ where $s+t=1$ ．One can check that $Q=(s, 0, t)$ ．Similarly， $R=(t, s, 0)$ ．So the circumcircle of $\triangle A Q R$ is given by

$$
-a^{2} y z-b^{2} z x-c^{2} x y+(x+y+z)(u x+v y+w z)=0
$$

where u, v, w are some real numbers．

Plugging in the point A gives $u=0$ ．Plugging in the point Q gives $w t=b^{2} s t$ ，so $w=b^{2} s$ ．Plugging in the point R gives $v s=c^{2} s t$ ，so $v=c^{2} t$ ．Thus the circumcircle has equation

$$
-a^{2} y z-b^{2} z x-c^{2} x y+(x+y+z)\left(c^{2} t y+b^{2} s z\right)=0 .
$$

Now let us consider the intersection of the A－symmedian with this circumcircle．Let the intersection be $X=\left(k: b^{2}: c^{2}\right)$ ．We aim to show the value of k does not depend on s or t ．But this is obvious，as substitution gives

$$
-a^{2} b^{2} c^{2}-2 b^{2} c^{2} k+\left(k+b^{2}+c^{2}\right)\left(b^{2} c^{2}\right)(s+t)=0 .
$$

Since $s+t=1$ and the equation is linear in k ，we have exactly one solution for k ．The proof ends here；there is no need to compute the value of k explicitly．（For the curious， the actual value of k is $k=-a^{2}+b^{2}+c^{2}$ ．）

§7f USAMO 2001／2

Let $A B C$ be a triangle and let ω be its incircle．Denote by D_{1} and E_{1} the points where ω is tangent to sides $B C$ and $A C$ ，respectively．Denote by D_{2} and E_{2} the points on sides $B C$ and $A C$ ，respectively，such that $C D_{2}=B D_{1}$ and $C E_{2}=A E_{1}$ ，and denote by P the point of intersection of segments $A D_{2}$ and $B E_{2}$ ．Circle ω intersects segment $A D_{2}$ at two points，the closer of which to the vertex A is denoted by Q ．Prove that $A Q=D_{2} P$ ．
（Available online at https：／／aops．com／community／p337870．）

We have that P is the Nagel point

$$
P=(s-a: s-b: s-c) .
$$

Therefore，

$$
\frac{P D_{2}}{A D_{2}}=\frac{s-a}{(s-a)+(s-b)+(s-c)}=\frac{s-a}{s} .
$$

Meanwhile，Q is the antipode of D_{1} ．The classical homothety at A mapping Q to D_{1}（by mapping the incircle to the A－excircle）has ratio $\frac{s-a}{s}$ as well（by considering the length of the tangents from A ），so we are done．

§7g TSTST 2012／7

Triangle $A B C$ is inscribed in circle Ω ．The interior angle bisector of angle A intersects side $B C$ and Ω at D and L（other than A ），respectively．Let M be the midpoint of side $B C$ ．The circumcircle of triangle $A D M$ intersects sides $A B$ and $A C$ again at Q and P（other than A ），respectively．Let N be the midpoint of segment $P Q$ ，and let H be the foot of the perpendicular from L to line $N D$ ．Prove that line $M L$ is tangent to the circumcircle of triangle $H M N$ ．
（Available online at https：／／aops．com／community／p2745857．）

By angle chasing，equivalent to show $\overline{M N} \| \overline{A D}$ ，so discard the point H ．We now present a three solutions．

【 First solution using vectors．We first contend that：
Claim－We have $Q B=P C$ ．

Proof．Power of a Point gives $B M \cdot B D=A B \cdot Q B$ ．Then use the angle bisector theorem．

Now notice that the vector

$$
\overrightarrow{M N}=\frac{1}{2}(\overrightarrow{B Q}+\overrightarrow{C P})
$$

which must be parallel to the angle bisector since $\overrightarrow{B Q}$ and $\overrightarrow{C P}$ have the same magnitude．
－Second solution using spiral similarity．let X be the arc midpoint of $B A C$ ．Then $A D M X$ is cyclic with diameter $\overline{A M}$ ，and hence X is the Miquel point X of $Q B P C$ is the midpoint of arc $B A C$ ．Moreover $\overline{X N D}$ collinear（as $X P=X Q, D P=D Q$ ）on（ $A P Q$ ）．

Then $\triangle X N M \sim \triangle X P C$ spirally，and

$$
\measuredangle X M N=\measuredangle X C P=\measuredangle X C A=\measuredangle X L A
$$

thus done．
－Third solution using barycentrics（mine）．Once reduced to $\overline{M N} \| \overline{A B}$ ，straight bary will also work．By power of a point one obtains

$$
\begin{aligned}
P & =\left(a^{2}: 0: 2 b(b+c)-a^{2}\right) \\
Q & =\left(a^{2}: 2 c(b+c)-a^{2}: 0\right) \\
\Longrightarrow N & =\left(a^{2}(b+c): 2 b c(b+c)-b a^{2}: 2 b c(b+c)-c a^{2}\right) .
\end{aligned}
$$

Now the point at infinity along $\overline{A D}$ is $(-(b+c): b: c)$ and so we need only verify

$$
\operatorname{det}\left[\begin{array}{ccc}
a^{2}(b+c) & 2 b c(b+c)-b a^{2} & 2 b c(b+c)-c a^{2} \\
0 & 1 & 1 \\
-(b+c) & b & c
\end{array}\right]=0
$$

which follows since the first row is $-a^{2}$ times the third row plus $2 b c(b+c)$ times the second row．

§7h December TST 2012／1

In acute triangle $A B C, \angle A<\angle B$ and $\angle A<\angle C$ ．Let P be a variable point on side $B C$ ．Points D and E lie on sides $A B$ and $A C$ ，respectively，such that $B P=P D$ and $C P=P E$ ．Prove that as P moves along side $\overline{B C}$ ，the circumcircle of triangle $A D E$ passes through a fixed point other than A ．
（Available online at https：／／aops．com／community／p3195787．）

Use reference $A B C$ ．Let $P=(0, s, t)$ with $s+t=1$ ．
Then we have that：

$$
B D=2 B P \cos B=2(a t) \cos B=t \cdot 2 c \in S_{B}
$$

Subtracting，$A D=c-B D=c-t \cdot 2 c^{-1} S_{B}$ ，so

$$
D=\left(t \cdot 2 c^{-1} S_{A}: c-t \cdot 2 c^{-1} S_{B}: 0\right)=\left(t \cdot 2 S_{A}: c^{2}-t \cdot 2 S_{B}: 0\right)
$$

Analogously，

$$
E=\left(s \cdot 2 S_{C}: 0: b^{2}-s \cdot 2 S_{C}\right)
$$

Claim－The circumcircle of $\triangle A D E$ has equation

$$
-a^{2} y z-b^{2} z x-c^{2} x y+2(x+y+z)\left(t S_{B} y+s S_{C} z\right)=0
$$

Proof．Circle formula applied to A gives $u=0$ ．Plugging in D and E ：

$$
\begin{aligned}
c^{2}\left(t \cdot 2 S_{B}\right)\left(c^{2}-t \cdot 2 S_{B}\right) & =c^{2}\left(v \cdot\left(c^{2}-t \cdot 2 S_{B}\right)\right) \\
\Longrightarrow v & =2 t \cdot S_{B} \\
\Longrightarrow w & =2 s \cdot S_{C}
\end{aligned}
$$

From here one can check that the fixed point turns out to be $H=\left(\frac{1}{S_{A}}: \frac{1}{S_{B}}: \frac{1}{S_{C}}\right)$ ．
Remark．One does not even need to compute the point H ．Instead，by inspection one observes there is a unique real number λ for which $\left(\lambda: \frac{1}{S_{B}}: \frac{1}{S_{C}}\right)$ lies on the circle，since one obtains a linear equation in λ whose linear coefficient is $\frac{-b^{2}}{S_{B}}+\frac{-c^{2}}{S_{C}}+2 \neq 0$ ，and that yields a fixed point．

§̧i Sharygin 2013／20

Let C_{1} be an arbitrary point on side $A B$ of $\triangle A B C$ ．Points A_{1} and B_{1} are on rays $B C$ and $A C$ such that $\angle A C_{1} B_{1}=\angle B C_{1} A_{1}=\angle A C B$ ．The lines $A A_{1}$ and $B B_{1}$ meet in point C_{2} ．Prove that all the lines $C_{1} C_{2}$ have a common point．

Here are two approaches．

ๆ First DDIT solution．Use dual Desargues＇involution theorem from C_{1} to complete quadrilateral $A B A_{1} B_{1} C C_{2}$ ；the involution corresponds to reflection over $\overline{A B}$ so we find that $C_{1} C_{2}$ passes through the reflection of C over $\overline{A B}$ ．

IT Second barycentric solution．We use barycentric coordinates．Let $A=(1,0,0)$ ， $B=(0,1,0)$ ，and $C=(0,0,1)$ ．Denote $a=B C, b=C A$ ，and $c=A B$ ．We claim that the common point is

$$
K=\left(a^{2}-b^{2}+c^{2}: b^{2}-a^{2}+c^{2}:-c^{2}\right)
$$

Let $C_{1}=(u, v, 0)$ with $u+v=1$ ．

By power of a point，we observe that $B A_{1}=\frac{u c^{2}}{a}$ ．Therefore，we obtain that

$$
A_{1}=\left(0: a-\frac{u c^{2}}{a}: \frac{u c^{2}}{a}\right)=\left(0: a^{2}-u c^{2}: u c^{2}\right)
$$

Similarly，

$$
B_{1}=\left(b^{2}-v c^{2}: 0: v c^{2}\right) .
$$

Therefore，

$$
C_{2}=\left(u\left(b^{2}-v c^{2}\right): v\left(a^{2}-u c^{2}\right): u v c^{2}\right) .
$$

Now we show that C_{1}, C_{2} ，and K are collinear．Expand

$$
\begin{aligned}
\left|\begin{array}{ccc}
u\left(b^{2}-v c^{2}\right) & v\left(a^{2}-u c^{2}\right) & u v c^{2} \\
u & v & 0 \\
a^{2}-b^{2}+c^{2} & b^{2}-a^{2}+c^{2} & -c^{2}
\end{array}\right|= & u v c^{2}\left|\begin{array}{ccc}
b^{2}-v c^{2} & a^{2}-u c^{2} & u v \\
1 & 1 \\
\frac{a^{2}-b^{2}+c^{2}}{u} & \frac{b^{2}-a^{2}+c^{2}}{v} & 0 \\
-1
\end{array}\right| \\
= & u v c^{2}\left[\left(a^{2}-u c^{2}\right)-\left(b^{2}-v c^{2}\right)\right. \\
& \left.+u\left(b^{2}-a^{2}+c^{2}\right)-v\left(a^{2}-b^{2}+c^{2}\right)\right] \\
= & u v c^{2}\left(b^{2}-a^{2}\right)(u+v-1)=0
\end{aligned}
$$

which implies that C_{1}, C_{2} ，and K are collinear，as desired．

§7j APMO 2013／5

Let $A B C D$ be a quadrilateral inscribed in a circle ω ，and let P be a point on the extension of $\overline{A C}$ such that $\overline{P B}$ and $\overline{P D}$ are tangent to ω ．The tangent at C intersects $\overline{P D}$ at Q and the line $A D$ at R ．Let E be the second point of intersection between $\overline{A Q}$ and ω ． Prove that B, E, R are collinear．
（Available online at https：／／aops．com／community／p3046946．）

I First solution．Let E^{\prime} be the second intersection of $\overline{B R}$ with ω ．Then

$$
-1=(A C ; B D) \stackrel{R}{=}\left(D C ; A E^{\prime}\right) .
$$

But $D A C E$ is harmonic，so $E=E^{\prime}$ ．

Second solution．Define E^{\prime} as before．Set $T=\overline{A A} \cap \overline{C R}, Z=\overline{A B} \cap \overline{C R}$ ．Then

$$
-1=(A C ; B D) \stackrel{A}{=}(T C ; Z R) \stackrel{B}{=}\left(D C ; A E^{\prime}\right) .
$$

So again $E=E^{\prime}$ ．

【 Third solution using Pascal．After defining T as before，use Pascal on $A A E B D D$ ．

ब Third solution with homography．Note that $A B C D$ is harmonic．Thus we can take a homography which preserves ω and sends $A B C D$ to a square（i．e．harmonic rectangle）， and then coordinate bash．

§7k USAMO 2005／3

Let $A B C$ be an acute－angled triangle，and let P and Q be two points on side $B C$ ． Construct a point C_{1} in such a way that the convex quadrilateral $A P B C_{1}$ is cyclic， $\overline{Q C_{1}} \| \overline{C A}$ ，and C_{1} and Q lie on opposite sides of line $A B$ ．Construct a point B_{1} in such a way that the convex quadrilateral $A P C B_{1}$ is cyclic，$\overline{Q B_{1}} \| \overline{B A}$ ，and B_{1} and Q lie on opposite sides of line $A C$ ．Prove that the points B_{1}, C_{1}, P ，and Q lie on a circle．
（Available online at https：／／aops．com／community／p213011．）

It is enough to prove that A, B_{1} ，and C_{1} are collinear，since then $\measuredangle C_{1} Q P=\measuredangle A C P=$ $\measuredangle A B_{1} P=\measuredangle C_{1} B_{1} P$ ．

【 First solution．Let T be the second intersection of $\overline{A C_{1}}$ with（APC）．Then readily $\triangle P C_{1} T \sim \triangle A B C$ ．Consequently，$\overline{Q C_{1}} \| \overline{A C}$ implies $T C_{1} Q P$ cyclic．Finally，$\overline{T Q} \| \overline{A B}$ now follows from the cyclic condition，so $T=B_{1}$ as desired．

【 Second solution．One may also use barycentric coordinates．Let $P=(0, m, n)$ and $Q=(0, r, s)$ with $m+n=r+s=1$ ．Once again，

$$
(A P B):-a^{2} y z-b^{2} z x-c^{2} x y+(x+y+z)\left(a^{2} m \cdot z\right)=0 .
$$

Set $C_{1}=(s-z, r, z)$ ，where $C_{1} Q \| A C$ follows by $(s-z)+r+z=1$ ．We solve for this z ．

$$
\begin{aligned}
0 & =-a^{2} r z+(s-z)\left(-b^{2} z-c^{2} r\right)+a^{2} m z \\
& =b^{2} z^{2}+\left(-s b^{2}+r c^{2}\right) z-a^{2} r z+a^{2} m z-c^{2} r s \\
& =b^{2} z^{2}+\left(-s b^{2}+r c^{2}+a^{2}(m-r)\right) z-c^{2} r s \\
\Longrightarrow 0 & =r b^{2}\left(\frac{z}{r}\right)^{2}+\left(-s b^{2}+r c^{2}+a^{2}(m-r)\right)\left(\frac{z}{r}\right)-c^{2} s .
\end{aligned}
$$

So the quotient of the z and y coordinates of C_{1} satisfies this quadratic．Similarly，if $B_{1}=(r-y, y, s)$ we obtain that

$$
0=s c^{2}\left(\frac{y}{s}\right)^{2}+\left(-r c^{2}+s b^{2}+a^{2}(n-s)\right)\left(\frac{y}{s}\right)-b^{2} r
$$

Since these two quadratics are the same when one is written backwards（and negated），it follows that their roots are reciprocals．But the roots of the quadratics represent $\frac{z}{y}$ and $\frac{y}{z}$ for the points C_{1} and B_{1} ，respectively．This implies（with some configuration blah）that the points B_{1} and C_{1} are collinear with $A=(1,0,0)$（in some line of the form $\frac{y}{z}=k$ ），as desired．

§7। Shortlist 2011 G2

Let $A_{1} A_{2} A_{3} A_{4}$ be a non－cyclic quadrilateral．For $1 \leq i \leq 4$ ，let O_{i} and r_{i} be the circumcenter and the circumradius of triangle $A_{i+1} A_{i+2} A_{i+3}$（where $A_{i+4}=A_{i}$ ）．Prove that

$$
\frac{1}{O_{1} A_{1}^{2}-r_{1}^{2}}+\frac{1}{O_{2} A_{2}^{2}-r_{2}^{2}}+\frac{1}{O_{3} A_{3}^{2}-r_{3}^{2}}+\frac{1}{O_{4} A_{4}^{2}-r_{4}^{2}}=0 .
$$

（Available online at https：／／aops．com／community／p2739321．）

Let ω_{i} be the circle with center O_{i} and radius r_{i} ．Set $A_{1}=(1,0,0), A_{2}=(0,1,0)$ ， $A_{3}=(0,0,1)$ ，and as usual let $a=A_{2} A_{3}$ and so on．Let $A_{4}=(p, q, r)$ ，where $p+q+r=1$ ． Let $T=a^{2} q r+b^{2} r p+c^{2} p q$ for brevity．

The circumcircle of $\triangle A_{2} A_{3} A_{4}$ can be seen to have equation

$$
-a^{2} y z-b^{2} z x-c^{2} x y+(x+y+z)\left(\frac{T}{p} x\right)=0
$$

By power of a point，we thus have that

$$
O_{1} A_{1}^{2}-r_{1}^{2}=(1+0+0) \cdot \frac{T}{p} \cdot 1=\frac{T}{p}
$$

Similarly，

$$
O_{2} A_{2}^{2}-r_{2}^{2}=\frac{T}{q} \text { and } O_{3} A_{3}^{2}-r_{3}^{2}=\frac{T}{r}
$$

Finally，we obtain $O_{4} A_{4}^{2}-r_{4}^{2}$ by plugging in A_{4} into $\left(A_{1} A_{2} A_{3}\right)$ ，which gives a value of $-T$ ．Hence the left－hand side of our expression is

$$
\frac{p}{T}+\frac{q}{T}+\frac{r}{T}-\frac{1}{T}=0
$$

since $p+q+r=1$ ．

§7m Romania TST 2010／6／2

Let $A B C$ be a scalene triangle，let I be its incenter，and let A_{1}, B_{1} ，and C_{1} be the points of contact of the excircles with the sides $B C, C A$ ，and $A B$ ，respectively．Prove that the circumcircles of the triangles $A I A_{1}, B I B_{1}$ ，and $C I C_{1}$ have a common point different from I ．

Let $A=(1,0,0), B=(0,1,0)$ and $C=(0,0,1)$ and define a, b, c in the usual fashion． Then，we get

$$
A_{1}=(0: s-b: s-c)
$$

and its cyclic variants，as well as $I=(a: b: c)$ ．
Let us calculate $\omega_{A}=\left(A I A_{1}\right)$ and its cyclic variants．Upon using the generic circle form $-a^{2} y z-b^{2} z x-c^{2} x y+(x+y+z)(u x+v y+w z)$ we find $u=0$ and the system

$$
\begin{aligned}
a b c & =v b+w c \\
a(s-b)(s-c) & =v(s-b)+w(s-c)
\end{aligned}
$$

Solving，we find that $v=\frac{a c(s-c)(2 b-s)}{s(b-c)}$ and $w=\frac{a b(s-b)(2 c-s)}{s(c-b)}$ ．In summary：

$$
\begin{aligned}
\omega_{A}: \quad 0 & =-a^{2} y z-b^{2} z x-c^{2} x y \\
& +(x+y+z)\left(\frac{a c(s-c)(2 b-s)}{s(b-c)} y+\frac{a b(s-b)(2 c-s)}{s(c-b)} z\right)
\end{aligned}
$$

One can then apply symmetry and compute the pairwise radical axes．However，a nice trick，due to Anant Mudgal，is to instead compute the radical axis with the circumcircle instead．

We define ℓ_{A} as the radical axis of the circumcircle of $\triangle A B C$ and ω_{A}. Consequently，

$$
\ell_{A}: \quad c(s-c)(2 b-s) y+b(s-b)(2 c-s) z=0
$$

If we define ℓ_{B} and ℓ_{C} similarly，then we find that $\ell_{A}, \ell_{B}, \ell_{C}$ concur at a point P（by Ceva，since $\left.\prod_{\mathrm{cyc}} \frac{c(s-c)(2 b-s)}{b(s-b)(2 c-s)}=1\right)$ ．Then line $P I$ is the common radical axis of the three circles．

Remark（Ryan Li）．Technically，we need to also show that the three circles are not all tangent．

§7n ELMO 2012／5

Let $A B C$ be an acute triangle with $A B<A C$ ，and let D and E be points on side $B C$ such that $B D=C E$ and D lies between B and E ．Suppose there exists a point P inside $A B C$ such that $\overline{P D} \| \overline{A E}$ and $\angle P A B=\angle E A C$ ．Prove that $\angle P B A=\angle P C A$ ．
（Available online at https：／／aops．com／community／p2728469．）

TI First solution（barycentric coordinates）．Suppose that $D=(0: 1: t)$ and $E=(0$ ： $t: 1)$ ．Let Q be the isogonal conjugate of P ；evidently Q lies on $\overline{A E}$ ，so $Q=(k: t: 1)$ for some k ．Moreover，$P=\left(\frac{a^{2}}{k}: \frac{b^{2}}{t}: c^{2}\right)$ ．

So the condition that $\overline{P D} \| \overline{A E}$ implies that P and D are collinear with the point at infinity $(-(1+t): t: 1)$ along line $A E$ ，so we find

$$
0 \xlongequal{ }\left|\begin{array}{ccc}
a^{2} / k & b^{2} / t & c^{2} \\
0 & 1 & t \\
-(1+t) & t & 1
\end{array}\right|
$$

which can be rewritten as

$$
0=\operatorname{det}\left|\begin{array}{ccc}
a^{2} / k & b^{2} / t & c^{2} \\
0 & 1 & t \\
-(1+t) & 1+t & 1+t
\end{array}\right|=(1+t)\left|\begin{array}{ccc}
a^{2} / k & b^{2} / t & c^{2} \\
0 & 1 & t \\
-1 & 1 & 1
\end{array}\right| .
$$

Expanding the determinant，we derive that

$$
0=a^{2}(1-t)+k\left(c^{2}-b^{2}\right)
$$

and applying the perpendicular bisector formula，we derive that $B Q=Q C$ ．So $\angle Q B C=$ $\angle Q C B$ ，implying $\angle P B A=\angle P C A$ ．
－Second solution（isogonality lemma）．Let R be the reflection of P across the midpoint of $\overline{B C}$ ，so $P B R C$ is a parallelogram．The conditions $B D=C E$ and $\overline{P D} \| \overline{A E}$ imply that R lies on $\overline{A E}$ ．Then since $\overline{A P}$ and $\overline{A R}$ are isogonal，isogonality lemma implies that $B, C, \overline{B P} \cap \overline{A C}$ and $\overline{C P} \cap \overline{A B}$ are concyclic，done．

§7o USA TST 2004／4

Let $A B C$ be a triangle．Choose a point D in its interior．Let ω_{1} be a circle passing through B and D and ω_{2} be a circle passing through C and D so that the other point of intersection of the two circles lies on $A D$ ．Let ω_{1} and ω_{2} intersect side $B C$ at $E \neq B$ and $F \neq C$ ，respectively．Let $X=\overline{D F} \cap \overline{A B}$ and $Y=\overline{D E} \cap \overline{A C}$ ．Show that $\overline{X Y} \| \overline{B C}$ ．
（Available online at https：／／aops．com／community／p456576．）

The following solution is with Mason Fang．We use barycentrics on $\triangle D B C$ ，with $a=B C, b=D C, c=D B$ ．Let＇s write the circles as

$$
\begin{aligned}
& \omega_{1}:-a^{2} y z-b^{2} z x-c^{2} x y+(x+y+z)(m z)=0 \\
& \omega_{2}:-a^{2} y z-b^{2} z x-c^{2} x y+(x+y+z)(n y)=0
\end{aligned}
$$

for constants $m, n \in \mathbb{R}$ ．Then

$$
\begin{aligned}
& E=\left(0: m: a^{2}-m\right) \\
& F=\left(0: a^{2}-n: n\right) .
\end{aligned}
$$

Then A lies on the radical axis $m z-n y=0$ ，so we may let

$$
A=(u: m: n) .
$$

Thus，intersecting cevians，

$$
\begin{aligned}
X & =\left(u: a^{2}-n: n\right) \\
Y & =\left(u: m: a^{2}-m\right) .
\end{aligned}
$$

Then $X Y$ is the line $\frac{y+z}{x}=\frac{a^{2}}{u}$ which is parallel to $\overline{B C}$（it passes through $(0: 1:-1)$ ）．

§7p TSTST 2012／2

Let $A B C D$ be a quadrilateral with $A C=B D$ ．Diagonals $A C$ and $B D$ meet at P ．Let ω_{1} and O_{1} denote the circumcircle and circumcenter of triangle $A B P$ ．Let ω_{2} and O_{2} denote the circumcircle and circumcenter of triangle $C D P$ ．Segment $B C$ meets ω_{1} and ω_{2} again at S and T（other than B and C ），respectively．Let M and N be the midpoints of minor arcs $\widehat{S P}$（not including B ）and $\widehat{T P}$（not including C ）．Prove that $\overline{M N} \| \overline{O_{1} O_{2}}$ ． （Available online at https：／／aops．com／community／p2745851．）

Let Q be the second intersection point of ω_{1}, ω_{2} ．Suffice to show $\overline{Q P} \perp \overline{M N}$ ．Now Q is the center of a spiral congruence which sends $\overline{A C} \mapsto \overline{B D}$ ．So $\triangle Q A B$ and $\triangle Q C D$ are similar isosceles．Now，

$$
\measuredangle Q P A=\measuredangle Q B A=\measuredangle D C Q=\measuredangle D P Q
$$

and so $\overline{Q P}$ is bisects $\angle B P C$ ．

Now，let $I=\overline{B M} \cap \overline{C N} \cap \overline{P Q}$ be the incenter of $\triangle P B C$ ．Then $I M \cdot I B=I P \cdot I Q=$ $I N \cdot I C$ ，so $B M N C$ is cyclic，meaning $\overline{M N}$ is antiparallel to $\overline{B C}$ through $\angle B I C$ ．Since $\overline{Q P I}$ passes through the circumcenter of $\triangle B I C$ ，it follows now $\overline{Q P I} \perp \overline{M N}$ as desired．

§7q IMO 2004／5

In a convex quadrilateral $A B C D$ ，the diagonal $B D$ bisects neither the angle $A B C$ nor the angle $C D A$ ．The point P lies inside $A B C D$ and satisfies

$$
\angle P B C=\angle D B A \text { and } \angle P D C=\angle B D A .
$$

Prove that $A B C D$ is a cyclic quadrilateral if and only if $A P=C P$ ．
（Available online at https：／／aops．com／community／p99759．）

Apply barycentric coordinates to $\triangle P B D$ with $P=(1,0,0), B=(0,1,0)$ and $D=$ $(0,0,1)$ ．Define $a=B D, b=D P$ and $c=P B$ ．

Since A and C are isogonal conjugates with respect to $\triangle P B D$ ，we set

$$
A=(a u: b v: c w) \quad \text { and } \quad C=\left(\frac{a}{u}: \frac{b}{v}: \frac{c}{w}\right) .
$$

For brevity define $M=a u+b v+c w$ and $N=a v w+b w u+c u v$ ．
We now compute each condition．
Claim－Quadrilateral $A B C D$ is cyclic if and only if $N^{2}=u^{2} M^{2}$ ．

Proof．W know a circle through B and D is a locus of points with

$$
\frac{a^{2} y z+b^{2} z x+c^{2} x y}{x(x+y+z)}
$$

is equal to some constant．Therefore quadrilateral $A B C D$ is cyclic if and only if $\frac{a b c \cdot N}{a u \cdot M}$ is equal to $\frac{a b c \cdot u v w \cdot M}{a v w \cdot N}$ which rearranges to $N^{2}=u^{2} M^{2}$ ．

Claim－We have $P A=P C$ if and only if $N^{2}=u^{2} M^{2}$.
Proof．We have the displacement vector $\overrightarrow{P A}=\frac{1}{M}(b v+c w,-b v,-c w)$ ．Therefore，

$$
\begin{aligned}
M^{2} \cdot|P A|^{2} & =-a^{2}(b v)(c w)+b^{2}(c w)(b v+c w)+c^{2}(b v)(b v+c w) \\
& =b c\left(-a^{2} v w+(b w+c v)(b v+c w)\right)
\end{aligned}
$$

In a similar way（by replacing u, v, w with their inverses）we have

$$
\begin{aligned}
& \left(\frac{N}{u v w}\right)^{2} \cdot|P C|^{2}=(v w)^{-2} \cdot b c\left(-a^{2} v w+(b v+c w)(b w+c v)\right) \\
& \Longleftrightarrow N^{2} \cdot|P C|^{2}=u^{2} b c\left(-a^{2} v w+(b w+c v)(b v+c w)\right)
\end{aligned}
$$

These are equal if and only if $N^{2}=u^{2} M^{2}$ ，as desired．

§7r Shortlist 2006 G4

A point D is chosen on the side $A C$ of a triangle $A B C$ with $\angle C<\angle A<90^{\circ}$ in such a way that $B D=B A$ ．The incircle of $A B C$ is tangent to $A B$ and $A C$ at points K and L ， respectively．Let J be the incenter of triangle $B C D$ ．Prove that the line $K L$ intersects the line segment $A J$ at its midpoint．
（Available online at https：／／aops．com／community／p842901．）

Let K^{\prime} and L^{\prime} be the reflections of A across K and L ．

$$
\begin{aligned}
K & =(s-b: s-a: 0) \Longrightarrow K^{\prime}=(a-b: 2(s-a): 0) \\
L & =(s-c: 0: s-a) \Longrightarrow L^{\prime}=(a-c: 0: 2(s-a))
\end{aligned}
$$

Now consider the phantom point $J^{\prime}=(a: b: t-a)$ such that $\overline{C J^{\prime}}$ bisects $\angle A C B$ and J^{\prime} lies on $\overline{K^{\prime} L^{\prime}}$ ．To compute its coordinates，we write

$$
0=\operatorname{det}\left[\begin{array}{ccc}
a-b & 2(s-a) & 0 \\
a-c & 0 & 2(s-a) \\
a & b & t-a
\end{array}\right] \Longrightarrow(a-c)(t-a)+b(a-b)=2 a(s-a)
$$

So，

$$
t=\frac{a(b+c-a)+a(a-c)-b(a-b)}{a-c}=\frac{b^{2}}{a-c} .
$$

In other words $J=\left(a(a-c): b(a-c): b^{2}-a(a-c)\right)$ ．So if $E=\overline{B J} \cap \overline{A C}$ then

$$
C E=\frac{a-c}{b^{2}} \cdot a
$$

Now let F be the foot of $\angle D B C$－bisector on $\overline{B C}$ ．Since $D=\left(2 S_{C}-b^{2}: 0: 2 S_{A}\right)$（by reflecting the foot of B ）the angle bisector theorem applied to $B D=c$ and $B C=a$ implies that

$$
C F=\frac{C D \cdot a}{a+c}=\frac{\frac{2 S_{C}-b^{2}}{2 S_{A}+2 S_{C}-b^{2}} \cdot a}{a+c}=\frac{a-c}{b^{2}} \cdot a=C E
$$

from which we conclude that $E=F$ as desired．

8
 Solutions for Inversion

Humans are like high templar. They're fragile, weak, and cause storms when they're mad. And they love giving feedback to others despite being unable to receive feedback themselves.

§8a BAMO 2011/4

A point D lies inside triangle $A B C$. Let A_{1}, B_{1}, C_{1} be the second intersection points of the lines $A D, B D$, and $C D$ with the circumcircles of $B D C, C D A$, and $A D B$, respectively. Prove that

$$
\frac{A D}{A A_{1}}+\frac{B D}{B B_{1}}+\frac{C D}{C C_{1}}=1 .
$$

(Available online at https://aops.com/community/p13035680.)

Inversion at D reduces this to a Ceva picture, which completely destroys the problem.

§8b Shortlist 2003 G4

Let $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \Gamma_{4}$ be distinct circles such that Γ_{1}, Γ_{3} are externally tangent at P, and Γ_{2}, Γ_{4} are externally tangent at the same point P. Suppose that Γ_{1} and Γ_{2}, Γ_{2} and Γ_{3}, Γ_{3} and Γ_{4}, Γ_{4} and Γ_{1} meet at A, B, C, D, respectively, and that all these points are different from P. Prove that

$$
\frac{A B \cdot B C}{A D \cdot D C}=\frac{P B^{2}}{P D^{2}}
$$

(Available online at https://aops.com/community/p119988.)

Invert arcound P with radius 1 .
The conditions in the problem imply that Γ_{1}^{*} and Γ_{3}^{*} are parallel lines, as are Γ_{2}^{*} and Γ_{4}^{*}. So $A^{*} B^{*} C^{*} D^{*}$ is a parallelogram,

$$
\begin{aligned}
A^{*} B^{*} & =D^{*} C^{*} \\
\text { and } A^{*} D^{*} & =B^{*} C^{*} .
\end{aligned}
$$

Take the quotient of these two to extract the desired result.

§8c EGMO 2013/5

Let Ω be the circumcircle of the triangle $A B C$. The circle ω is tangent to the sides $A C$ and $B C$, and it is internally tangent to the circle Ω at the point P. A line parallel
to $A B$ intersecting the interior of triangle $A B C$ is tangent to ω at Q ．Prove that $\angle A C P=\angle Q C B$ ．
（Available online at https：／／aops．com／community／p3014767．）

First，let us extend $\overline{A Q}$ to meet $\overline{B C}$ at Q_{1} ．By homothety，we see that Q_{1} is just the contact point of the A－excircle with $\overline{B C}$ ．

Now let us perform an inversion around A with radius $\sqrt{A B \cdot A C}$ followed by a reflection around the angle bisector；call this map Ψ ．Note that Ψ fixes B and C ．Moreover it swaps $\overline{B C}$ and $(A B C)$ ．Hence，this map swaps the A－excircle with the A－mixtilinear incircle ω ．Hence Ψ swaps P and Q_{1} ．It follows that $\overline{A P}$ and $\overline{A Q_{1}}$ are isogonal with respect to $\angle B A C$ ，meaning $\angle B A P=\angle C A Q_{1}$ ．Since $\angle C A Q=\angle C A Q_{1}$ we are done．

§8d Russia 2009／10．2

In triangle $A B C$ with circumcircle Ω ，the internal angle bisector of $\angle A$ intersects $\overline{B C}$ at D and Ω again at E ．The circle with diameter $\overline{D E}$ meets Ω again at F ．Prove that $\overline{A F}$ is a symmedian of triangle $A B C$ ．
（Available online at https：／／aops．com／community／p1493622．）

A $\sqrt{b c}$ inversion fixes the circle with diameter $\overline{D E}$ ．Hence it maps F to the midpoint of $\overline{B C}$ ．This implies the result．

§8e Shortlist 1997／9

Let $A_{1} A_{2} A_{3}$ be a non－isosceles triangle with incenter I ．Let $\Gamma_{i}, i=1,2,3$ ，be the smaller circle through I tangent to $A_{i} A_{i+1}$ and $A_{i} A_{i+2}$（indices taken mod 3）．Let $B_{i}, i=1,2,3$ ， be the second point of intersection of Γ_{i+1} and Γ_{i+2} ．Prove that the circumcenters of the triangles $A_{1} B_{1} I, A_{2} B_{2} I, A_{3} B_{3} I$ are collinear．
（Available online at https：／／aops．com／community／p1219054．）

It suffices to prove the circles are coaxial．Let $D E F$ be the intouch triangle．Note thatof Γ_{1}^{*} is exactly the circle with diameter $\overline{I D}$ ，etc．

We proceed by inversion around I ．
Claim－The triangle $A_{1}^{*} A_{2}^{*} A_{3}^{*}$ is the medial triangle of $D E F$ ．
Proof．Circles Γ_{2} and Γ_{3} are mapped to the circles with diameter $\overline{I E}$ and $\overline{I F}$ ，hence their second intersection A_{1}^{*} is exactly the midpoint of $\overline{E F}$ ．

Claim－The triangle $B_{1}^{*} B_{2}^{*} B_{3}^{*}$ is homothetic to triangle $D E F$ ．
Proof．This is the triangle determined by the lines $\Gamma_{1}^{*}, \Gamma_{2}^{*}, \Gamma_{3}^{*}$ ．Since Γ_{1}^{*} is clearly perpendicular to $\overline{A_{1} I}$ ，it is parallel to $\overline{E F}$ ，and similarly．

This means $A_{1}^{*} B_{1}^{*}, A_{2}^{*} B_{2}^{*}, A_{3}^{*} B_{3}^{*}$ are indeed concurrent as needed．

§8f IMO 1993／2

Let A, B, C, D be four points in the plane，with C and D on the same side of the line $A B$ ，such that $A C \cdot B D=A D \cdot B C$ and $\angle A D B=90^{\circ}+\angle A C B$ ．Find the ratio $\frac{A B \cdot C D}{A C \cdot B D}$ ， and prove that the circumcircles of the triangles $A C D$ and $B C D$ are orthogonal．
（Available online at https：／／aops．com／community／p99766．）

Answer：$\sqrt{2}$ ．
The conditions should translate to $\angle D^{*} B^{*} C^{*}=90^{\circ}$ and $B^{*} D^{*}=B^{*} C^{*}$ ．

§8g IMO 1996／2

Let P be a point inside a triangle $A B C$ such that

$$
\angle A P B-\angle A C B=\angle A P C-\angle A B C .
$$

Let D, E be the incenters of triangles $A P B, A P C$ ，respectively．Show that the lines $A P$ ， $B D, C E$ concur．
（Available online at https：／／aops．com／community／p3459．）

Invert around A to eliminate the angle condition．One should find that $\angle C^{*} B^{*} P^{*}=$ $\angle B^{*} C^{*} P^{*}$ ．

How to handle the incenters？Why does $\angle A D^{*} B^{*}=\frac{1}{2} \angle A P^{*} B^{*}$ ？

§8h IMO 2015／3

Let $A B C$ be an acute triangle with $A B>A C$ ．Let Γ be its circumcircle，H its orthocenter， and F the foot of the altitude from A ．Let M be the midpoint of $\overline{B C}$ ．Let Q be the point on Γ such that $\angle H Q A=90^{\circ}$ and let K be the point on Γ such that $\angle H K Q=90^{\circ}$ ． Assume that the points A, B, C, K and Q are all different and lie on Γ in this order． Prove that the circumcircles of triangles $K Q H$ and $F K M$ are tangent to each other．
（Available online at https：／／aops．com／community／p5079655．）

Let L be on the nine－point circle with $\angle H M L=90^{\circ}$ ．The negative inversion at H swapping Γ and nine－point circle maps

$$
A \longleftrightarrow F, \quad Q \longleftrightarrow M, \quad K \longleftrightarrow L
$$

In the inverted statement，we want line $M L$ to be tangent to $(A Q L)$ ．

$$
\text { Claim }-\overline{L M} \| \overline{A Q} .
$$

Proof．Both are perpendicular to $\overline{M H Q}$ ．

$$
\text { Claim }-L A=L Q
$$

Proof．Let N and T be the midpoints of $\overline{H Q}$ and $\overline{A H}$ ，and O the circumcenter．As $\overline{M T}$ is a diameter，we know $L T N M$ is a rectangle，so $\overline{L T}$ passes through O ．Since $\overline{L O T} \perp \overline{A Q}$ and $O A=O Q$ ，the proof is complete．

Together these two claims solve the problem．

9
 Solutions for Projective Geometry

I don't think Jane Street would appreciate all their thousands of dollars going to fruit snacks.

Debbie Lee, at MOP 2022

§9a TSTST 2012/4

In scalene triangle $A B C$, let the feet of the perpendiculars from A to $\overline{B C}, B$ to $\overline{C A}, C$ to $\overline{A B}$ be A_{1}, B_{1}, C_{1}, respectively. Denote by A_{2} the intersection of lines $B C$ and $B_{1} C_{1}$. Define B_{2} and C_{2} analogously. Let D, E, F be the respective midpoints of sides $\overline{B C}$, $\overline{C A}, \overline{A B}$. Show that the perpendiculars from D to $\overline{A A_{2}}, E$ to $\overline{B B_{2}}$ and F to $\overline{C C_{2}}$ are concurrent.
(Available online at https://aops.com/community/p2745854.)

We claim that they pass through the orthocenter H. Indeed, consider the circle with diameter $\overline{B C}$, which circumscribes quadrilateral $B C B_{1} C_{1}$ and has center D. Then by Brokard theorem, $\overline{A A_{2}}$ is the polar of line H. Thus $\overline{D H} \perp \overline{A A_{2}}$.

§9b Singapore TST

Let ω and O be the circumcircle and circumcenter of right triangle $A B C$ with $\angle B=90^{\circ}$. Let P be any point on the tangent to ω at A other than A, and suppose ray $P B$ intersects ω again at D. Point E lies on line $C D$ such that $\overline{A E} \| \overline{B C}$. Prove that P, O, and E are collinear.

Let F be the point diametrically opposite B, and apply Pascal theorem to $A A F B D C$.

§9c Canada 1994／5

Let $A B C$ be an acute triangle．Let $\overline{A D}$ be the altitude on $\overline{B C}$ ，and let H be any interior point on $\overline{A D}$ ．Lines $B H$ and $C H$ ，when extended，intersect $\overline{A C}, \overline{A B}$ at E and F respectively．

Prove that $\angle E D H=\angle F D H$ ．
（Available online at https：／／aops．com／community／p2268953．）

Let line $E F$ meet $B C$ again at X ．Moreover，let line $A H$ meet line $E F$ at Y ．

Note derive that $(X, D ; B, C)=-1$ ；perspectivity at A gives $(X, Y ; E, F)=-1$ ．In any case，since we know $\angle X D Y=90^{\circ}$ ，the harmonic bundle tells us $\overline{D H}$ bisects $\angle F D E$ ．

§9d ELMO SL 2012 G3

Let $A B C$ be a triangle with incenter I ．The foot of the perpendicular from I to $\overline{B C}$ is D ，and the foot of the perpendicular from I to $\overline{A D}$ is P ．Prove that $\angle B P D=\angle D P C$ ．
（Available online at https：／／aops．com／community／p2728462．）

Let $\triangle D E F$ be the contact triangle，and X be the second intersection of $\overline{A D}$ with the incircle．

Note that $X F E D$ is harmonic due to the tangents at A ，and thus the tangents to D and X meet on $\overline{E F}$ ，say at T ．In that case $\overline{A X D}$ is the polar of point T ，hence $\overline{I T} \perp \overline{A D}$ ， hence $P=\overline{I T} \cap \overline{A D}$ ．

Now $(T D ; B C)=-1$ since $\overline{A D}, \overline{B E}, \overline{C F}$ concur at the Gergonne point．Since $\angle T P D=90^{\circ}$ this gives the desired angle bisection．

Remark．After showing T lies on line $E F$ ，Anka Hu points out that one can avoid appealing to the Gergonne point as follows：one has

$$
(T D ; B C) \stackrel{E}{=}(F D ; Y E)=-1
$$

where Y is the second intersection of $\overline{B E}$ with the incircle．（The quadrilateral $Y F E D$ is harmonic due to the tangents from B ．）

§9e IMO 2014／4

Let P and Q be on segment $B C$ of an acute triangle $A B C$ such that $\angle P A B=\angle B C A$ and $\angle C A Q=\angle A B C$ ．Let M and N be points on $\overline{A P}$ and $\overline{A Q}$ ，respectively，such that P is the midpoint of $\overline{A M}$ and Q is the midpoint of $\overline{A N}$ ．Prove that $\overline{B M}$ and $\overline{C N}$ meet on the circumcircle of $\triangle A B C$ ．
（Available online at https：／／aops．com／community／p3543136．）

We give three solutions．
【 First solution by harmonic bundles．Let $\overline{B M}$ intersect the circumcircle again at X ．

The angle conditions imply that the tangent to $(A B C)$ at B is parallel to $\overline{A P}$ ．Let ∞ be the point at infinity along line $A P$ ．Then

$$
-1=(A M ; P \infty) \stackrel{B}{=}(A X ; B C) .
$$

Similarly，if $\overline{C N}$ meets the circumcircle at Y then $(A Y ; B C)=-1$ as well．Hence $X=Y$ ， which implies the problem．
－Second solution by similar triangles．Once one observes $\triangle C A Q \sim \triangle C B A$ ，one can construct D the reflection of B across A ，so that $\triangle C A N \sim \triangle C B D$ ．Similarly，letting E be the reflection of C across A ，we get $\triangle B A P \sim \triangle B C A \Longrightarrow \triangle B A M \sim \triangle B C E$ ．Now to show $\angle A B M+\angle A C N=180^{\circ}$ it suffices to show $\angle E B C+\angle B C D=180^{\circ}$ ，which follows since $B C D E$ is a parallelogram．

【 Third solution by barycentric coordinates．Since $P B=c^{2} / a$ we have

$$
P=\left(0: a^{2}-c^{2}: c^{2}\right)
$$

so the reflection $\vec{M}=2 \vec{P}-\vec{A}$ has coordinates

$$
M=\left(-a^{2}: 2\left(a^{2}-c^{2}\right): 2 c^{2}\right) .
$$

Similarly $N=\left(-a^{2}: 2 b^{2}: 2\left(b^{2}-a^{2}\right)\right)$ ．Thus

$$
\overline{B M} \cap \overline{C N}=\left(-a^{2}: 2 b^{2}: 2 c^{2}\right)
$$

which clearly lies on the circumcircle，and is in fact the point identified in the first solution．

§9f Shortlist 2004 G8

Given a cyclic quadrilateral $A B C D$ ，let M be the midpoint of the side $C D$ ，and let N be a point on the circumcircle of triangle $A B M$ ．Assume that the point N is different from the point M and satisfies $\frac{A N}{B N}=\frac{A M}{B M}$ ．Prove that the points E, F, N are collinear， where $E=\overline{A D} \cap \overline{B C}$ and $F=\overline{A C} \cap \overline{B D}$ ．
（Available online at https：／／aops．com／community／p243438．）

We present two solutions．
－First solution by projective geometry．Let $T=\overline{E F} \cap \overline{C D}$ ，and $K=\overline{A B} \cap \overline{C D}$ ．Then $K T \cdot K M=K C \cdot K D$（the latter since $(K M ; C D)=-1)$ ，since $A B T M$ is cyclic．

Now that we know $A B T M$ is cyclic，we obtain

$$
-1=(D C ; T K) \stackrel{F}{=}(A B ; X K) \stackrel{T}{=}(A B ; N M)
$$

where $X=\overline{A B} \cap \overline{F T}$ ．This completes the proof．

Second solution by complex numbers（Anant Mudgal）．By Brokard theorem it＇s enough to check that N lies on the polar of $K=\overline{A B} \cap \overline{C D}$ ．We use complex numbers with $A B C D$ the unit circle．First，from the condition，we ought to have

$$
-1=(A B ; M N)=\frac{m-a}{m-b} \div \frac{n-a}{n-b}
$$

and so solving gives

$$
n=\frac{2 a b-m(a+b)}{a+b-2 m} .
$$

To deal with the polar，we use the following lemma（which seems fundamental yet not so well－known）．

Lemma

N lies on the polar of K if and only if

$$
n \bar{k}+k \bar{n}=2 .
$$

Proof．If $K X$ and $K Y$ are tangents，we have $\frac{2 x y}{x+y}=k$ and $\frac{2}{x+y}=\bar{k}$ ，and we want $n+x y \bar{n}=x+y$ ，which rearranges to the lemma．

To finish，we have $k=\frac{c d(a+b)-a b(c+d)}{c d-a b}$ ；then a computation shows that

$$
n \bar{k}+\bar{k} n=\frac{(a+b)(c+d)-4 a b}{2(c d-a b)}+\frac{4 c d-(a+b)(c+d)}{2(c d-a b)}=2
$$

as desired．
Remark．Times change．Rumor has it that in 2005 when this problem was given at MOP， no contestants solved it．（I even heard this was an example of＂why you should learn complex numbers＂．）Even in 2010 ago the use of cross ratios in olympiad geometry was not canon；it was an advanced technique that you only learned your second or third time at MOP．These days，it seems even the middle schoolers know what a harmonic bundle is．

§9g Sharygin 2013／16

The incircle of $\triangle A B C$ touches $\overline{B C}, \overline{C A}, \overline{A B}$ at points A^{\prime}, B^{\prime} and C^{\prime} respectively．The perpendicular from the incenter I to the C－median meets the line $A^{\prime} B^{\prime}$ in point K ．Prove that $\overline{C K} \| \overline{A B}$ ．

Let ω be the circumcircle of $\triangle A^{\prime} B^{\prime} C$ and let K^{\prime} be the intersection of line $A^{\prime} B^{\prime}$ with the line through C parallel to $A B$ ．Furthermore，let Z be the foot of the perpendicular from I to $C M$ and observe that $Z \in \omega$ ．It suffices to prove that $\angle K^{\prime} Z L$ is right，because this will imply $K^{\prime}=K$ ．

Let P_{∞} be the point at infinity on line $A B$ ．Then the quadruple $\left(A, B ; M, P_{\infty}\right)$ is clearly harmonic．Taking perspectivity from C onto line $A^{\prime} B^{\prime}$ we observe that（ $B^{\prime}, A^{\prime} ; L, K^{\prime}$ ）is harmonic．
Now consider point Z ．Observe that $Z L$ is an angle bisector of $\angle B Z A^{\prime}$ ，since $B^{\prime} C=$ $A^{\prime} C$ implies the arcs $B^{\prime} C$ and $A^{\prime} C$ are equal．Since we have a harmonic bundle，we conclude that $L Z \perp K^{\prime} Z$ as desired．

§9h Shortlist 2004 G2

Circle Γ has diameter $\overline{A B}$ ，and line d is perpendicular to $\overline{A B}$ ．Assume d does not intersect Γ and is closer to B than A ．Let C be an arbitrary point on Γ ，different from the points A and B ．Line $A C$ meets d at D ．One of the two tangents from the point D to the circle Γ touches Γ at a point E on the same side of $\overline{A C}$ as B ．Line $B E$ meets d at F ．Line $A F$ meets Γ at a point G different from A ．Prove that the reflection of the point G in the line $A B$ lies on the line $C F$ ．
（Available online at https：／／aops．com／community／p152744．）

Pascal＇s theorem on $A G E E B C$ shows that $\overline{B C} \cap \overline{G E}$ lies on d ．

Let G^{\prime} be the reflection of G over $\overline{A B}$ ．Then applying Pascal＇s theorem to $C G^{\prime} G E B B$ forces $\overline{C G^{\prime}} \cap \overline{B E}$ to lie on d ，so the intersection must be the point F ．

§9i January TST 2013／2

Let $A B C$ be an acute triangle．Circle ω_{1} ，with diameter $\overline{A C}$ ，intersects side $\overline{B C}$ at F （other than C ）．Circle ω_{2} ，with diameter $\overline{B C}$ ，intersects side $\overline{A C}$ at E（other than C ）． Ray $A F$ intersects ω_{2} at K and M with $A K<A M$ ．Ray $B E$ intersects ω_{1} at L and N with $B L<B N$ ．Prove that lines $A B, M L, N K$ are concurrent．
（Available online at https：／／aops．com／community／p3161948．）

Let $\overline{C D}$ be the third altitude．Quadrilateral $K L M N$ is cyclic，by power of a point； after all we have $N H \cdot L H=C H \cdot D H=K H \cdot M H$（since $C N A D L$ and $C M B D K$ are cyclic）．Denote its circumcircle by γ ．Then its center must be C ，since it lies on the perpendicular bisectors of $\overline{K M}, \overline{L N}$ ．

Now $\overline{A N}$ and $\overline{A L}$ are tangents to γ ，since $\angle A N C=\angle A L C=90^{\circ}$ ．Similarly，so are $\overline{B K}$ and $\overline{B M}$ ．So by Brokard theorem it follows H is the pole of $\overline{A B}$ ．Also by Brokard theorem，$\overline{N K} \cap \overline{L M}$ lies on the polar of H ，which was what we wanted to prove．

§9j Brazil 2011／5

Let $A B C$ be an acute triangle with orthocenter H and altitudes $\overline{B D}, \overline{C E}$ ．The circum－ circle of $A D E$ cuts the circumcircle of $A B C$ at $F \neq A$ ．Prove that the angle bisectors of $\angle B F C$ and $\angle B H C$ concur at a point on $\overline{B C}$ ．
（Available online at https：／／aops．com／community／p2477427．）
－First solution（harmonic）．First，notice that lines $A F, E D$ and $B C$ concur at a point T ，which is the radical center of the circumcircle，the circle with diameter $\overline{A H}$（of course H is the orthocenter of $A B C$ ），and the circle with diameter $\overline{B C}$ ．

Now let L be the foot of A on $\overline{B C}$ and X the reflection of H over L（which lies on the circumcircle）．In light of angle bisector theorem，it suffices to show $B F C X$ is harmonic． But now

$$
-1=(T L ; B C) \stackrel{A}{=}(F X ; B C)
$$

since $\overline{A L}, \overline{B D}, \overline{C E}$ meet at the orthocenter H ．（We are given $F \neq A$ ，thus $A B \neq A C$ ， so $\overline{D E} \nVdash \overline{B C}$ ．）

ब Second solution（variant by David Hu）．As before it suffices to show $F B X C$ is harmonic，where X is the reflection of H ．Projecting from A onto（AH），it＇s equivalent to show $F E H D$ is a harmonic quadrilateral．

Let M be the midpoint of $\overline{B C}$ ．Then
－It＇s known that $\overline{M E}$ and $\overline{M D}$ are tangents（for example，by noting that $\overline{N M}$ is a diameter of the nine－point circle for N the midpoint of $\overline{A H})$ ．
－Moreover，$\overline{M H F}$ are collinear by considering the antipode Y of A on $\overline{M H}$ ．
These two results together imply $F E H D$ is harmonic．
－Third solution（spiral similarity）．Note that F is Miquel point of complete quadrilat－ eral $B E D C$ ．Thus $B F / C F=B E / C D$ ．The fact $B E / C D=B H / C H$ is obvious．

§9k ELMO SL 2013 G3

In non－right triangle $A B C$ ，a point D lies on line $\overline{B C}$ ．The circumcircle of $A B D$ meets $\overline{A C}$ at F（other than A ），and the circumcircle of $A D C$ meets $\overline{A B}$ at E（other than A ）． Prove that as D varies，the circumcircle of $A E F$ always passes through a fixed point other than A ，and that this point lies on the median from A to $\overline{B C}$ ．
（Available online at https：／／aops．com／community／p3151962．）

After a $\sqrt{b c}$ inversion around A ，it suffices to prove that for variable D^{*} on $(A B C)$ ， the line through $E^{*}=\overline{B D^{*}} \cap \overline{A C}$ and $F^{*}=\overline{C D^{*}} \cap \overline{A B}$ passes through a fixed point on the A－symmedian．By Brokard＇s theorem this is the pole of $\overline{B C}$ ．

Alternatively，use barycentric coordinates with $A=(1,0,0)$ ，etc．Let $D=(0: m: n)$ with $m+n=1$ ．Then the circle $A B D$ has equation $-a^{2} y z-b^{2} z x-c^{2} x y+(x+y+$ z）$\left(a^{2} m \cdot z\right)$ ．To intersect it with side $A C$ ，put $y=0$ to get $(x+z)\left(a^{2} m z\right)=b^{2} z x \Longrightarrow$ $\frac{b^{2}}{a^{2} m} \cdot x=x+z \Longrightarrow\left(\frac{b^{2}}{a^{2} m}-1\right) x=z$ ，so

$$
F=\left(a^{2} m: 0: b^{2}-a^{2} m\right)
$$

Similarly，

$$
G=\left(a^{2} n: c^{2}-a^{2} n: 0\right)
$$

Then，the circle $(A F G)$ has equation

$$
-a^{2} y z-b^{2} z x-c^{2} x y+a^{2}(x+y+z)(m y+n z)=0
$$

Upon picking $y=z=1$ ，we easily see there exists a t such that $(t: 1: 1)$ is on the circle， implying the conclusion．

One can also use trigonometry directly．Let M be the midpoint of $B C$ ．By power of a point，$c \cdot B E+b \cdot C F=a \cdot B D+a \cdot C D=a^{2}$ is constant．Fix a point D_{0} ；and let $P_{0}=A M \cap\left(A E_{0} F_{0}\right)$ ．For any other point D ，we have $\frac{E_{0} E}{F_{0} F}=\frac{b}{c}=\frac{\sin \angle B A M}{\sin \angle C A M}=\frac{P_{0} E_{0}}{P_{0} F_{0}}$ from the extended law of sines，so triangles $P_{0} E_{0} E$ and $P_{0} F_{0} F$ are directly similar，whence $A E P_{0} F$ is cyclic，as desired．

§91 APMO 2008／3

Let Γ be the circumcircle of a triangle $A B C$ ．A circle passing through points A and C meets the sides $\overline{B C}$ and $\overline{B A}$ at D and E ，respectively．The lines $A D$ and $C E$ meet Γ again at G and H ，respectively．The tangent lines to Γ at A and C meet the line $D E$ at L and M ，respectively．Prove that the lines $L H$ and $M G$ meet at Γ ．
（Available online at https：／／aops．com／community／p1073985．）

【 First solution．We will ignore the condition that $A C D E$ is cyclic．
Let $T=\overline{A D} \cap \overline{C E}$ and $O=\overline{B T} \cap \overline{A C}$ ．
Now we can take a projective transformation that preserves the circumcircle of $A B C$ and sends O to the center of the circle．In that case，$\overline{A C}$ is a diameter，and moreover T lies on the B－median of $\triangle A B C$ ，meaning that $\overline{D E} \| \overline{A C}$ ．

From this we deduce that $A L M C$ is a rectangle．Now we see that $A L H E$ and $D G M C$ are cyclic．From this we can use angle chasing to compute $\measuredangle H K G$ as

$$
\begin{aligned}
\measuredangle H K G & =\measuredangle L K M=-\measuredangle K M L-\measuredangle M L K \\
& =-\measuredangle G M D-\measuredangle E L H \\
& =-\measuredangle G C D-\measuredangle E A H=-\measuredangle G C B-\measuredangle B A H \\
& =-\measuredangle G A B-\measuredangle B A H=-\measuredangle G A H=-\measuredangle G B H \\
& =\measuredangle H B G .
\end{aligned}
$$

Hence H, B, K, G are concyclic and we are done．

【 Second solution（Chen Sun）．Let lines $D E$ and $A C$ meet at T ，and let X be the second intersection of $B T$ with the circumcircle．We claim X is the intersection of lines $L H$ and $M G$ ．

Indeed，Pascal＇s theorem on $X G A C C B$ implies that $\overline{X G} \cap \overline{C C}, \overline{G A} \cap \overline{C B}=D$ ，and $\overline{A C} \cap \overline{B X}=T$ are collinear．Since $M=\overline{D T} \cap \overline{C C}$ ，it follows that M lies on line $X G$ ． Similarly，H lies on line $X L$（by Pascal on $X H C A A B$ ）．

Remark．Colin Tang points out that the condition $A E D C$ cyclic implies that $\overline{E D}, \overline{H G}$ ， $\overline{B B}$ are actually parallel to each other（they＇re all anti－parallel to $\overline{A C}$ ）．But these three lines are concurrent anyways，by Pascal theorem on BBAGHC．So you can think of this as giving a reason to believe the cyclic condition doesn＇t matter；it＇s only saying that the concurrency point lies on the infinity line，which isn＇t special from a projective standpoint．

I have a conjecture that in an problem where up to two conditions are not projective， then those conditions can be deleted．

§9m ELMO SL 2014 G2

Suppose $A B C D$ is a cyclic quadrilateral inscribed in the circle ω ．Let $E=\overline{A B} \cap \overline{C D}$ and $F=\overline{A D} \cap \overline{B C}$ ．Let ω_{1} and ω_{2} be the circumcircles of triangles $A E F$ and $C E F$ ， respectively．Let G and H be the intersections of ω and ω_{1}, ω and ω_{2} ，respectively，with $G \neq A$ and $H \neq C$ ．Show that $\overline{A C}, \overline{B D}$ ，and $\overline{G H}$ are concurrent．
（Available online at https：／／aops．com／community／p3557483．）

Let K be the radical center of $\omega, \omega_{1}, \omega_{2}$ ，so that K is the intersection of $\overline{A G}, \overline{C H}$ ， and $\overline{E F}$ ．Let $R=\overline{A C} \cap \overline{G H}$ ．The problem is to prove that R lies on $\overline{B D}$ ．Hence by Brokard＇s theorem on $A B C D$ ，it suffices to check that the polar of R is line $E F$ ．

By applying Brokard＇s theorem on quadrilateral $A C G H$ ，we find that the polar of R is a line passing through the pole of $\overline{A C}$ and the point $K=\overline{A G} \cap \overline{C H}$ ．But the pole of $\overline{A C}$ lies on $\overline{E F}$ by Brokard＇s theorem on $A B C D$ ．Moreover，so does the point K by construction．Thus the pole of $\overline{A C}$ and the point K both lie on $E F$ ．Hence the polar of R really is $\overline{E F}$ ，and we are done．

§9n Shortlist 2005 G6

Let $A B C$ be a triangle，and M the midpoint of its side $B C$ ．Let γ be the incircle of triangle $A B C$ ．The median $A M$ of triangle $A B C$ intersects the incircle γ at two points K and L ．Let the lines passing through K and L ，parallel to $\overline{B C}$ ，intersect the incircle γ again in two points X and Y ．Let the lines $A X$ and $A Y$ intersect $B C$ again at the points P and Q ．Prove that $B P=C Q$ ．
（Available online at https：／／aops．com／community／p463068．）

Recall that $\overline{A K L M}, \overline{E F}$ ，and $\overline{D I}$ are concurrent at a point Z ，say．Since $\overline{X Y}$ and $\overline{K L}$ are reflections about $\overline{D I}$ ，it now follows that Z lies on $\overline{X Y}$ as well．

From harmonic quadrilaterals，we have $(A Z ; K L)=-1$ ．Let ∞ be the point at infinity along $\overline{B C}$ and set $W=\overline{A \infty} \cap \overline{X Y}$ ．Now
as desired．

10 Solutions for Complete Quadrilaterals

하늘을 봐 내 맘을 담은 조각을
저 자리에 둘 테니까 날 불러줘 그 언젠가
Look at the sky, I'll leave a piece containing my heart there
So, call me when the time comes
PLEASE PLEASE, by EVERGLOW

§10a USAMO 2013/1

In triangle $A B C$, points P, Q, R lie on sides $B C, C A, A B$, respectively. Let ω_{A}, ω_{B}, ω_{C} denote the circumcircles of triangles $A Q R, B R P, C P Q$, respectively. Given the fact that segment $A P$ intersects $\omega_{A}, \omega_{B}, \omega_{C}$ again at X, Y, Z respectively, prove that $Y X / X Z=B P / P C$.
(Available online at https://aops.com/community/p3041822.)

Let M be the concurrence point of $\omega_{A}, \omega_{B}, \omega_{C}$ (by Miquel's theorem).

Then M is the center of a spiral similarity sending $\overline{Y Z}$ to $\overline{B C}$. So it suffices to show that this spiral similarity also sends X to P, but

$$
\measuredangle M X Y=\measuredangle M X A=\measuredangle M R A=\measuredangle M R B=\measuredangle M P B
$$

so this follows.

§10b Shortlist 1995 G8

Suppose that $A B C D$ is a cyclic quadrilateral. Let $E=\overline{A C} \cap \overline{B D}$ and $F=\overline{A B} \cap \overline{C D}$. Prove that F lies on the line joining the orthocenters of triangles $E A D$ and $E B C$.
（Available online at https：／／aops．com／community／p185022．）

Consider the circle ω_{1} with diameter $\overline{A B}$ and the circle ω_{2} with diameter $\overline{C D}$ ．Moreover， let ω be the circumcircle of $A B C D$ ．

We saw already in the proof of the Gauss line that the two orthocenters lie on the radical axis of ω_{1} and ω_{2}（i．e．，the Steiner line of $A D B C$ ）．Hence the problem is solved if we can prove that F also lies on this radical axis．But this follows from the fact that F is actually the radical center of circles ω_{1}, ω_{2} and ω ．

§10c USA TST 2007／1

Circles ω_{1} and ω_{2} meet at P and Q ．Segments $A C$ and $B D$ are chords of ω_{1} and ω_{2} respectively，such that segment $A B$ and ray $C D$ meet at P ．Ray $B D$ and segment $A C$ meet at X ．Point Y lies on ω_{1} such that $\overline{P Y} \| \overline{B D}$ ．Point Z lies on ω_{2} such that $\overline{P Z} \| \overline{A C}$ ．Prove that points Q, X, Y, Z are collinear．
（Available online at https：／／aops．com／community／p982011．）

Let Y^{\prime} be the second intersection of ray $Q X$ with ω_{1} ．We prove that $\overline{P Y^{\prime}} \| \overline{B D}$ ，which implies that Q, X, Y are collinear．（The point Z is handled similarly．）

The given conditions imply that Q is the Miquel point of complete quadrilateral $D X A P$ ．Hence quadrilaterals $C Q D X$ and $B Q X A$ are cyclic．Therefore，

$$
\measuredangle Q Y^{\prime} P=\measuredangle Q C P=\measuredangle Q C D=\measuredangle Q X D=\measuredangle Q X B
$$

which implies $\overline{P Y^{\prime}} \| \overline{B X}$ ．

§10d USAMO 2013／6

Let $A B C$ be a triangle．Find all points P on segment $B C$ satisfying the following property：If X and Y are the intersections of line $P A$ with the common external tangent lines of the circumcircles of triangles $P A B$ and $P A C$ ，then

$$
\left(\frac{P A}{X Y}\right)^{2}+\frac{P B \cdot P C}{A B \cdot A C}=1
$$

（Available online at https：／／aops．com／community／p3043749．）

Let O_{1} and O_{2} denote the circumcenters of $P A B$ and $P A C$ ．The main idea is to notice that $\triangle A B C$ and $\triangle A O_{1} O_{2}$ are spirally similar．

Claim（Salmon theorem）－We have $\triangle A B C \stackrel{+}{\sim} \triangle A O_{1} O_{2}$.
Proof．We first claim $\triangle A O_{1} B \stackrel{ \pm}{\sim} \triangle A O_{2} C$ ．Assume without loss of generality that $\angle A P B \leq 90^{\circ}$ ．Then

$$
\angle A O_{1} B=2 \angle A P B
$$

but

$$
\angle A O_{2} C=2(180-\angle A P C)=2 \angle A B P .
$$

Hence $\angle A O_{1} B=\angle A O_{2} C$ ．Moreover，both triangles are isosceles，establishing the first similarity．The second part follows from spiral similarities coming in pairs．

Claim－We always have

$$
\left(\frac{P A}{X Y}\right)^{2}=1-\left(\frac{a}{b+c}\right)^{2}
$$

（In particular，this does not depend on P ．）

Proof．We now delete the points B and C and remember only the fact that $\triangle A O_{1} O_{2}$ has angles A, B, C ．The rest is a computation and several approaches are possible．

Without loss of generality A is closer to X than Y ，and let the common tangents be $\overline{X_{1} X_{2}}$ and $\overline{Y_{1} Y_{2}}$ ．We＇ll perform the main calculation with the convenient scaling $O_{B} O_{C}=a, A O_{C}=b$ ，and $A O_{B}=c$ ．Let B_{1} and C_{1} be the tangency points of X ，and let $h=A M$ be the height of $\triangle A O_{B} O_{C}$ ．

Note that by Power of a Point，we have $X X_{1}^{2}=X X_{2}^{2}=X M^{2}-h^{2}$ ．Also，by Pythagorean theorem we easily obtain $X_{1} X_{2}=a^{2}-(b-c)^{2}$ ．So putting these together gives

$$
X M^{2}-h^{2}=\frac{a^{2}-(b-c)^{2}}{4}=\frac{(a+b-c)(a-b+c)}{4}=(s-b)(s-c)
$$

Therefore，we have
Then

$$
\frac{X M^{2}}{h^{2}}=1+\frac{(s-b)(s-c)}{h^{2}}=1+\frac{a^{2}(s-b)(s-c)}{a^{2} h^{2}}
$$

$$
\begin{aligned}
& =1+\frac{a^{2}(s-b)(s-c)}{4 s(s-a)(s-b)(s-c)}=1+\frac{a^{2}}{4 s(s-a)} \\
& =1+\frac{a^{2}}{(b+c)^{2}-a^{2}}=\frac{(b+c)^{2}}{(b+c)^{2}-a^{2}} .
\end{aligned}
$$

Thus

$$
\left(\frac{P A}{X Y}\right)^{2}=\left(\frac{h}{X M}\right)^{2}=1-\left(\frac{a}{b+c}\right)^{2} .
$$

To finish，note that when P is the foot of the $\angle A$－bisector，we necessarily have

$$
\frac{P B \cdot P C}{A B \cdot A C}=\frac{\left(\frac{b}{b+c} a\right)\left(\frac{c}{b+c} a\right)}{b c}=\left(\frac{a}{b+c}\right)^{2} .
$$

Since there are clearly at most two solutions as $\frac{P A}{X Y}$ is fixed，these are the only two solutions．

§10e USA TST 2007／5

Triangle $A B C$ is inscribed in circle ω ．The tangent lines to ω at B and C meet at T ． Point S lies on ray $B C$ such that $\overline{A S} \perp \overline{A T}$ ．Points B_{1} and C_{1} lie on ray $S T$（with C_{1} in between B_{1} and S ）such that $B_{1} T=B T=C_{1} T$ ．Prove that triangles $A B C$ and $A B_{1} C_{1}$ are similar．
（Available online at https：／／aops．com／community／p982020．）

We ignore for now the point A ，and think about the problem in terms of $B_{1} B C C_{1}$ ．
Let $K=\overline{B B_{1}} \cap \overline{C C_{1}}$ and $R=\overline{B_{1} C} \cap \overline{C_{1} B}$ ．Hence R is the orthocenter of $\triangle K B_{1} C_{1}$ and C, B are the feet of the altitudes，while T is the midpoint of $\overline{B_{1} C_{1}}$ ．It is known that $\overline{T B}$ and $\overline{T C}$ are tangent to（ $K B C R$ ），whence this circle actually coincides with ω ．

Now，we know that point A satisfies the following two conditions：
－Point A lies on ω ．
－We have $\angle T A S=90^{\circ}$ ．

There are two points A with this condition，since the locus is the intersection of two circles．

One of these points is the Miquel point of（convex）quadrilateral $B_{1} B C C_{1}$ ，and we denote it by A_{1} ．It is the inverse of the intersection of the diagonals R ．The other is the Miquel point of quadrilateral $B_{1} C B C_{1}$（which is self－intersecting），which we denote by A_{2} ； indeed that point also lies on ω ，and satisfies $\measuredangle T A_{2} R=\measuredangle T A_{2} S=90^{\circ}$ ．In the first case we get that $\triangle A B C \sim \triangle A B_{1} C_{1}$ directly and in the other case we get $\triangle A B C \sim \triangle A C_{1} B_{1}$ instead．

§10f IMO 2005／5

Let $A B C D$ be a fixed convex quadrilateral with $B C=D A$ and $\overline{B C} \nVdash \overline{D A}$ ．Let two variable points E and F lie on the sides $B C$ and $D A$ ，respectively，and satisfy $B E=D F$ ． The lines $A C$ and $B D$ meet at P ，the lines $B D$ and $E F$ meet at Q ，the lines $E F$ and $A C$ meet at R ．Prove that the circumcircles of the triangles $P Q R$ ，as E and F vary， have a common point other than P ．
（Available online at https：／／aops．com／community／p282140．）

Let M be the Miquel point of complete quadrilateral $A D B C$ ；in other words，let M be the second intersection point of the circumcircles of $\triangle A P D$ and $\triangle B P C$ ．（A good diagram should betray this secret；all the points are given in the picture．）This makes lots of sense since we know E and F will be sent to each other under the spiral similarity too．

Thus M is the Miquel point of complete quadrilateral $F A C E$ ．As $R=\overline{F E} \cap \overline{A C}$ we deduce $F A R M$ is a cyclic quadrilateral（among many others，but we＇ll only need one）．

Now look at complete quadrilateral $A F Q P$ ．Since M lies on $(D F Q)$ and $(R A F)$ ，it follows that M is in fact the Miquel point of $A F Q P$ as well．So M lies on $(P Q R)$ ．

Thus M is the fixed point that we wanted．
Remark．Naturally，the congruent length condition can be relaxed to $D F / D A=B E / B C$ ．

§10g USAMO 2006／6

Let $A B C D$ be a quadrilateral，and let E and F be points on sides $A D$ and $B C$ ， respectively，such that $\frac{A E}{E D}=\frac{B F}{F C}$ ．Ray $F E$ meets rays $B A$ and $C D$ at S and T ， respectively．Prove that the circumcircles of triangles $S A E, S B F, T C F$ ，and $T D E$ pass through a common point．
（Available online at https：／／aops．com／community／p490691．）

Let M be the Miquel point of $A B C D$ ．Then M is the center of a spiral similarity taking $A D$ to $B C$ ．The condition guarantees that it also takes E to F ．Hence，we see that M is the center of a spiral similarity taking $\overline{A B}$ to $\overline{E F}$ ，and consequently the circumcircles of $Q A B, Q E F, S A E, S B F$ concur at point M ．

In other words，the Miquel point of $A B C D$ is also the Miquel point of $A B F E$ ．Similarly， M is also the Miquel point of $E D C F$ ，so all four circles concur at M ．

§10h Balkan 2009／2

Let $\overline{M N}$ be a line parallel to the side $B C$ of a triangle $A B C$ ，with M on the side $A B$ and N on the side $A C$ ．The lines $\overline{B N}$ and $\overline{C M}$ meet at point P ．The circumcircles of triangles $B M P$ and $C N P$ intersect at a point $Q \neq P$ ．Prove that $\angle B A Q=\angle C A P$ ．
（Available online at https：／／aops．com／community／p1484879．）

By Ceva，$\overline{A P}$ is a median，so we wish to show $\overline{A Q}$ is a symmedian．But Q is the center of the spiral similarity

$$
\triangle Q B M \sim \triangle Q N C
$$

so the ratio of distance from Q to sides $\overline{B M}$ and $\overline{C N}$ is equal to $B M: N C=A B: A C$ ， hence the result．

§10i TSTST 2012／7

Triangle $A B C$ is inscribed in circle Ω ．The interior angle bisector of angle A intersects side $B C$ and Ω at D and L（other than A ），respectively．Let M be the midpoint of side $B C$ ．The circumcircle of triangle $A D M$ intersects sides $A B$ and $A C$ again at Q and P（other than A ），respectively．Let N be the midpoint of segment $P Q$ ，and let H be the foot of the perpendicular from L to line $N D$ ．Prove that line $M L$ is tangent to the circumcircle of triangle $H M N$ ．
（Available online at https：／／aops．com／community／p2745857．）

By angle chasing，equivalent to show $\overline{M N} \| \overline{A D}$ ，so discard the point H ．We now present a three solutions．

I First solution using vectors．We first contend that：
Claim－We have $Q B=P C$ ．

Proof．Power of a Point gives $B M \cdot B D=A B \cdot Q B$ ．Then use the angle bisector theorem．

Now notice that the vector

$$
\overrightarrow{M N}=\frac{1}{2}(\overrightarrow{B Q}+\overrightarrow{C P})
$$

which must be parallel to the angle bisector since $\overrightarrow{B Q}$ and $\overrightarrow{C P}$ have the same magnitude．

IT Second solution using spiral similarity．let X be the arc midpoint of $B A C$ ．Then $A D M X$ is cyclic with diameter $\overline{A M}$ ，and hence X is the Miquel point X of $Q B P C$ is the midpoint of arc $B A C$ ．Moreover $\overline{X N D}$ collinear（as $X P=X Q, D P=D Q$ ）on $(A P Q)$ ．

Then $\triangle X N M \sim \triangle X P C$ spirally，and

$$
\measuredangle X M N=\measuredangle X C P=\measuredangle X C A=\measuredangle X L A
$$

thus done．
－Third solution using barycentrics（mine）．Once reduced to $\overline{M N} \| \overline{A B}$ ，straight bary will also work．By power of a point one obtains

$$
\begin{aligned}
P & =\left(a^{2}: 0: 2 b(b+c)-a^{2}\right) \\
Q & =\left(a^{2}: 2 c(b+c)-a^{2}: 0\right) \\
\Longrightarrow N & =\left(a^{2}(b+c): 2 b c(b+c)-b a^{2}: 2 b c(b+c)-c a^{2}\right) .
\end{aligned}
$$

Now the point at infinity along $\overline{A D}$ is $(-(b+c): b: c)$ and so we need only verify

$$
\operatorname{det}\left[\begin{array}{ccc}
a^{2}(b+c) & 2 b c(b+c)-b a^{2} & 2 b c(b+c)-c a^{2} \\
0 & 1 & 1 \\
-(b+c) & b & c
\end{array}\right]=0
$$

which follows since the first row is $-a^{2}$ times the third row plus $2 b c(b+c)$ times the second row．

§10j TSTST 2012／2

Let $A B C D$ be a quadrilateral with $A C=B D$ ．Diagonals $A C$ and $B D$ meet at P ．Let ω_{1} and O_{1} denote the circumcircle and circumcenter of triangle $A B P$ ．Let ω_{2} and O_{2} denote the circumcircle and circumcenter of triangle $C D P$ ．Segment $B C$ meets ω_{1} and ω_{2} again at S and T（other than B and C ），respectively．Let M and N be the midpoints of minor arcs $\widehat{S P}$（not including B ）and $\widehat{T P}$（not including C ）．Prove that $\overline{M N} \| \overline{O_{1} O_{2}}$ ．
（Available online at https：／／aops．com／community／p2745851．）

Let Q be the second intersection point of ω_{1}, ω_{2} ．Suffice to show $\overline{Q P} \perp \overline{M N}$ ．Now Q is the center of a spiral congruence which sends $\overline{A C} \mapsto \overline{B D}$ ．So $\triangle Q A B$ and $\triangle Q C D$ are similar isosceles．Now，

$$
\measuredangle Q P A=\measuredangle Q B A=\measuredangle D C Q=\measuredangle D P Q
$$

and so $\overline{Q P}$ is bisects $\angle B P C$ ．

Now，let $I=\overline{B M} \cap \overline{C N} \cap \overline{P Q}$ be the incenter of $\triangle P B C$ ．Then $I M \cdot I B=I P \cdot I Q=$ $I N \cdot I C$ ，so $B M N C$ is cyclic，meaning $\overline{M N}$ is antiparallel to $\overline{B C}$ through $\angle B I C$ ．Since $\overline{Q P I}$ passes through the circumcenter of $\triangle B I C$ ，it follows now $\overline{Q P I} \perp \overline{M N}$ as desired．

§10k USA TST 2009／2

Let $A B C$ be an acute triangle．Point D lies on side $B C$ ．Let O_{B}, O_{C} be the circumcenters of triangles $A B D$ and $A C D$ ，respectively．Suppose that the points B, C, O_{B}, O_{C} lie on a circle centered at X ．Let H be the orthocenter of triangle $A B C$ ．Prove that $\angle D A X=\angle D A H$ ．
（Available online at https：／／aops．com／community／p1566047．）

Without loss of generality $A C>A B$ ．It is easy to verify via angle chasing that $\angle A O_{B} B=\angle A O_{C} C$ ．Since $O_{B} O_{C} C B$ is cyclic，it follows that A is the Miquel point of $O_{B} O_{C} C B$ ．Therefore，$A O_{C} X B$ is cyclic．

Set $x=\angle B A D, y=\angle C A D$ ．Then

$$
\begin{aligned}
\angle B O_{B} O_{C} & =\angle B O_{B} D+\angle D O_{B} C=2 x+B \\
\Longrightarrow \angle B X C & =360-4 x-2 B \\
\Longrightarrow \angle B A X & =\angle B O_{C} X=2 x+B-90 .
\end{aligned}
$$

On the other hand，$\angle B A H=90-B$ ．From here it is easy to derive that $\angle H A D=$ $x+B-90=\angle X A D$ ，as desired．

§10। Shortlist 2009 G4

Given a cyclic quadrilateral $A B C D$ ，let $E=\overline{A C} \cap \overline{B D}, F=\overline{A D} \cap \overline{B C}$ ．The midpoints of $\overline{A B}$ and $\overline{C D}$ are G and H ，respectively．Show that $\overline{E F}$ is tangent at E to the circle through the points E, G ，and H ．
（Available online at https：／／aops．com／community／p1932936．）

We present two approaches．
－First solution with harmonic bundles．Let M be the midpoint of $\overline{E F}$ ．Then M, G ， H lie on the Gauss line of complete quadrilateral $A D B C$ ．Let $P=\overline{A B} \cap \overline{C D}$ and let line $E F$ meet $\overline{A B}$ and $\overline{C D}$ at X and Y ，respectively．

Note that we have harmonic bundles

$$
(X Y ; E F)=(P X ; A B)=(P Y ; D C)=-1
$$

We thus obtain $X Y G H$ cyclic from

$$
P X \cdot P G=P A \cdot P B=P D \cdot P C=P Y \cdot P H
$$

Now，from $(M E ; X Y)=-1$ we have

$$
M E^{2}=M X \cdot M Y=M G \cdot M H
$$

which gives the desired conclusion．

ब Second solution using complex numbers（Sanjana Das）．As before let $P=\overline{A B} \cap \overline{C D}$ ． We are supposed to verify that

$$
\frac{e-f}{e-g} \div \frac{e-h}{g-h} \in \mathbb{R}
$$

to get the desired equality of directed angles．To avoid involving the point E at all，we use the following two ideas：
－By Brokard＇s theorem，the direction of $e-f$ is perpendicular to $p=\frac{a b(c+d)-c d(a+b)}{a b-c d}$ ．
－Since $\triangle E B A \approx \triangle E C D$ we also have $\triangle E B G \approx \triangle E C H$ ．Consequently，the complex number $(e-g)(e-h)$ has the same direction as $(e-b)(e-c)$ ，and hence the same direction as $(d-b)(a-c)$ ．

On the other hand，$g-h=\frac{a+b-c-d}{2}$ ．So putting this all together，we need to verify

$$
\frac{i \cdot \frac{a b(c+d)-c d(a+b)}{a b-c d} \cdot \frac{a+b-c-d}{2}}{(d-b)(a-c)} \in \mathbb{R}
$$

which is immediate．

§10m Shortlist 2006 G9

Points A_{1}, B_{1}, C_{1} are chosen on the sides $B C, C A, A B$ of a triangle $A B C$ respectively． The circumcircles of triangles $A B_{1} C_{1}, B C_{1} A_{1}, C A_{1} B_{1}$ intersect the circumcircle of triangle $A B C$ again at points A_{2}, B_{2}, C_{2} respectively $\left(A_{2} \neq A, B_{2} \neq B, C_{2} \neq C\right)$ ．Points A_{3}, B_{3}, C_{3} are symmetric to A_{1}, B_{1}, C_{1} with respect to the midpoints of the sides $B C$ ， $C A, A B$ respectively．Prove that the triangles $A_{2} B_{2} C_{2}$ and $A_{3} B_{3} C_{3}$ are similar．
（Available online at https：／／aops．com／community／p875036．）

We will prove the following claim，after which only angle chasing remains．
Claim－We have $\measuredangle A C_{3} B_{3}=\measuredangle A_{2} B C$.

Proof．By spiral similarity at A_{2} ，we deduce that $\triangle A_{2} C_{1} B \sim \triangle A_{2} B_{1} C$ ，hence

$$
\frac{A_{2} B}{A_{2} C}=\frac{C_{1} B}{B_{1} C}=\frac{A C_{3}}{A B_{3}} .
$$

It follows that

$$
\triangle A_{2} B C \sim \triangle A C_{3} B_{3}
$$

since we also have $\measuredangle B A_{2} C=\measuredangle B A C=\measuredangle C_{3} A B_{3}$ ．（Configuration issues：we can check that A_{2} lies on the same side of A as $\overline{B C}$ since B_{1} and C_{1} are constrained to lie on the sides of the triangle．So we can deduce $\angle C_{3} A B_{3}=\angle B A_{2} C$ ．）

Thus $\measuredangle A C_{3} B_{3}=\measuredangle A_{2} B C$ ，completing the proof．
Similarly，$\measuredangle B C_{3} A_{3}=\measuredangle B_{2} A C$
The rest is angle chasing；we have

$$
\begin{aligned}
\measuredangle A_{3} C_{3} B_{3} & =\measuredangle A_{3} C_{3} A+\measuredangle A C_{3} B_{3} \\
& =\measuredangle A_{3} C_{3} B+\measuredangle A C_{3} B_{3} \\
& =\measuredangle C A B_{2}+\measuredangle A_{2} B C \\
& =\measuredangle A_{2} C_{2} C+\measuredangle C C_{2} B_{2} \\
& =\measuredangle A_{2} C_{2} B_{2} .
\end{aligned}
$$

§10n Shortlist 2005 G5

Let $\triangle A B C$ be an acute－angled triangle with $A B \neq A C$ ．Let H be the orthocenter of triangle $A B C$ ，and let M be the midpoint of the side $B C$ ．Let D be a point on the side $A B$ and E a point on the side $A C$ such that $A E=A D$ and the points D, H, E are on the same line．Prove that the line $H M$ is perpendicular to the radical axis of the circumcircles of $\triangle A D E$ and $\triangle A B C$ ．
（Available online at https：／／aops．com／community／p519896．）

Let X be the second intersection of the circumcircles of $A D E$ and $A B C$（in other words，the Miquel point of complete quadrilateral $D E C B$ ）．We will in fact prove that $\angle M X A=90^{\circ}$ ．This will establish the problem．
（Note that one could have＂guessed＂this was the case by reflecting H over M to A^{\prime} ， and then realizing that the foot of the altitude from A to $\overline{H M}$ must in fact lie on the circumcircle of $A B C$ ．）

Let Y and Z be the feet of the altitudes from B and C to $\overline{A C}$ and $\overline{A B}$ ．It suffices to prove that X lies on the circle with diameter $\overline{A H}$ ．Since X is already the center of a spiral similarity mapping $\overline{B D}$ to $\overline{C E}$ ，we just need it to also map Z to Y ．In other words，we want

$$
\frac{B D}{Z D}=\frac{C E}{Y E} .
$$

This can be done easily enough with explicit calculation．However，here is a more elegant solution．Notice that

$$
\angle Z H B=90^{\circ}-\angle Z B H=\angle A .
$$

On the other hand，

$$
\angle D H Z=90^{\circ}-\angle A D E=90^{\circ}-\left(90^{\circ}-\frac{1}{2} \angle A\right)=\frac{1}{2} \angle A .
$$

Therefore，$\overline{H D}$ bisects $\angle Z H B$ ．Similarly，$\overline{E H}$ bisects $\angle Y H C$ ．Finally，$Z H \cdot H C=$ $Y H \cdot H B$ since the points Z, Y, B, C are concyclic．Tying these all together，we have

$$
\frac{B D}{Z D}=\frac{Z H}{B H}=\frac{Y H}{C H}=\frac{C E}{Y E}
$$

as required．
Remark．One can phrase this solution using the forgotten coaxiality lemma，see https： ／／aops．com／community／p27873074．

11 Solutions for Personal Favorites

How do you accidentally rob a bank??
RWBY Chibi, Season 3, Episode 1

§11a Canada 2000/4

Let $A B C D$ be a convex quadrilateral with $\angle C B D=2 \angle A D B, \angle A B D=2 \angle C D B$ and $A B=C B$. Prove that $A D=C D$.
(Available online at https://aops.com/community/p445434.)

Let $P=\overline{A D} \cap \overline{B C}, Q=\overline{A B} \cap \overline{C D}$. Now $2 \angle A D B=\angle C B D=\angle B P D+\angle P D B$, meaning $\angle B P D=\angle B D P$ and $B P=B D$. Similarly, $B Q=B D$.

Now $B P=B Q$ and $B C=B A$ give $\triangle Q B C \cong \triangle P B A$; from here the solution follows readily.

§11b EGMO 2012/1

Let $A B C$ be a triangle with circumcenter O. The points D, E, F lie in the interiors of the sides $B C, C A, A B$ respectively, such that $\overline{D E} \perp \overline{C O}$ and $\overline{D F} \perp \overline{B O}$. Let K be the circumcenter of triangle $A F E$. Prove that the lines $\overline{D K}$ and $\overline{B C}$ are perpendicular.
(Available online at https://aops.com/community/p2658992.)

First, note $\measuredangle E D F=180^{\circ}-\measuredangle B O C=180^{\circ}-2 A$, so $\measuredangle F D E=2 A$.

Observe that $\measuredangle F K E=2 A$ as well；hence $K F D E$ is cyclic．Hence

$$
\begin{aligned}
\measuredangle K D B & =\measuredangle K D F+\measuredangle F D B \\
& =\measuredangle K E F+\left(90^{\circ}-\measuredangle D B O\right) \\
& =\left(90^{\circ}-A\right)+\left(90^{\circ}-\left(90^{\circ}-A\right)\right) \\
& =90^{\circ} .
\end{aligned}
$$

and the proof ends here．

§11c ELMO 2013／4

Triangle $A B C$ is inscribed in circle ω ．A circle through $B C$ intersects segments $A B$ and $A C$ at S and R ，respectively．Lines $B R$ and $C S$ meet at L ，and intersect ω at D and E ， respectively．The angle bisector of $\angle B D E$ meets $E R$ at K ．

Prove that if $B E=B R$ ，then $\angle E L K=\frac{1}{2} \angle B C D$ ．
（Available online at https：／／aops．com／community／p3104305．）

First，we claim that $B E=B R=B C$ ．Indeed，construct a circle with radius $B E=B R$ centered at B ，and notice that $\angle E C R=\frac{1}{2} \angle E B R$ ，implying that it lies on the circle．

Now，$C A$ bisects $\angle E C D$ and $D B$ bisects $\angle E D C$ ，so R is the incenter of $\triangle C D E$ ． Then，K is the incenter of $\triangle L E D$ ，so

$$
\angle E L K=\frac{1}{2} \angle E L D=\frac{1}{2}\left(\frac{\widehat{E D}+\widehat{B C}}{2}\right)=\frac{1}{2} \frac{\widehat{B E D}}{2}=\frac{1}{2} \angle B C D .
$$

【 Authorship comments．This problem was actually written backwards；the idea is a phantom circle with center B and radius $B E$ ．This causes a certain isosceles triangle to appear，and I wanted to see what I could do with it．

After some messing around I eventually found that making the cyclic quadrilateral through $B C$ created the right setup for the angles I wanted．（Originally the problem was phrased in terms of the cyclic quadrilateral $B C S R$ ，which was then named $A B C D$ ．）I started drawing lines to see where I could take the hidden isosceles triangle．Four hours later，I got something sort of contrived which I showed Aaron Lin．

He liked it，but then pointed out that R was the incenter of $\triangle D E C$ ，something I hadn＇t noticed earlier．So I decided to make another incenter K and put in a random angle condition．I was somewhat satisfied with the result．

§11d USAMTS 3／3／24

In quadrilateral $A B C D, \angle D A B=\angle A B C=110^{\circ}, \angle B C D=35^{\circ}, \angle C D A=105^{\circ}$ ，and $\overline{A C}$ bisects $\angle D A B$ ．Find $\angle A B D$ ．

The following diagram is not drawn to scale．

Let I denote the incenter of $\triangle A B D$ ．Then quadrilateral $I B C D$ is cyclic since $\angle D I B=$ $90^{\circ}+\frac{1}{2} \angle D A B=145^{\circ}$ ．Hence we obtain $\angle I B D=\angle I C D=180^{\circ}-\left(55^{\circ}+105^{\circ}\right)=20^{\circ}$ and so $\angle A B D=40^{\circ}$ ．

§11e Sharygin 2013／21

Chords $\overline{B C}$ and $\overline{D E}$ of circle ω meet at point A ．The line through D parallel to $B C$ meets ω again at F ，and $F A$ meets ω again at T ．Let $M=\overline{E T} \cap \overline{B C}$ and let N be the reflection of A over M ．Show that（ $D E N$ ）passes through the midpoint of $B C$ ．
（Available online at https：／／aops．com／community／p3008129．）

Let K be the midpoint of $B C$ ，and let L be the reflection of A over K ．Note that F is the reflection of D over $O K$ ，so we find that $D F L A$ is an isosceles trapezoid．Then，

$$
\angle M E D=\angle T E D=\angle T F D=\angle A F D=\angle A L D=\angle M L D .
$$

Therefore，$M E L D$ is cyclic．

Now，by Power of a Point，we see that

$$
A D \cdot A E=A M \cdot A L
$$

$$
\begin{aligned}
& =A M \cdot 2 A K \\
& =2 A M \cdot A K \\
& =N A \cdot A K
\end{aligned}
$$

Therefore，$D K E N$ is cyclic，as desired．

§11f ELMO 2012／1

In acute triangle $A B C$ ，let D, E, F denote the feet of the altitudes from A, B, C ， respectively，and let ω be the circumcircle of $\triangle A E F$ ．Let ω_{1} and ω_{2} be the circles through D tangent to ω at E and F ，respectively．Show that ω_{1} and ω_{2} meet at a point P on line $B C$ other than D ．
（Available online at https：／／aops．com／community／p2728459．）

Let M denote the midpoint of $\overline{B C}$ ．

It＇s known that $\overline{M E}$ and $\overline{M F}$ are tangents to ω（and hence to ω_{1}, ω_{2} ），so M is the radical center of $\omega, \omega_{1}, \omega_{2}$ ．Now consider the radical axis of ω_{1} and ω_{2} ．It passes through D and M ，so it is line $B C$ ，and we are done．
（Thus the problem is still true if D is replaced by any point on $\overline{B C}$ ．）

§11g Sharygin 2013／14

In trapezoid $A B C D, \angle A=\angle D=90^{\circ}$ ．Let M and N be the midpoints of diagonals $A C$ and $B D$ ，respectively．Let $Q=(A B N) \cap B C$ and $R=(C D M) \cap B C$ ．If K is the midpoint of $M N$ ，show that $K Q=K R$ ．

Let $A B=2 x, C D=2 y$ ，and assume without loss of generality that $x<y$ ．Let L be the midpoint of $B C$ and denote $B C=2 \ell$ ．Let P be the midpoint of $Q R$ ．Let T be the foot of B on $D C$ ．

Since N is the midpoint of the hypotenuse of $\triangle A B D$ ，it follows that $A N=B N$ ．Since $M N \| A B$ ，we see that $M N$ is tangent to $(A B N)$ ．Similarly，it is tangent to $(B C M)$ ．

Noting that $L M=\frac{1}{2} A B$ via $\triangle A B C$ ，we obtain

$$
L R \cdot L C=L M^{2}=\left(\frac{1}{2} A B\right)^{2}=x^{2} \Longrightarrow L R=\frac{x^{2}}{\ell}
$$

Similarly，$L Q=\frac{y^{2}}{\ell}$ ．Then，

$$
P L=\frac{L Q-L R}{2}=\frac{y^{2}-x^{2}}{2 \ell}-\text { and } K L=\frac{M L+N L}{2}=x+y
$$

But then，we find that

$$
\frac{K L}{P L}=\frac{\frac{y^{2}-x^{2}}{2 \ell}}{x+y}=\frac{y-x}{2 \ell}=\frac{T C}{B C}
$$

Combined with $\angle K L P=\angle B C T$ ，we find that $\triangle K L P \sim \triangle B C T$ ．Therefore，$\angle K P L=$ $\angle B T C=90^{\circ}$ ．But P is the midpoint of $Q R$ ，so $K Q=K R$ ．

§11h Bulgaria 2012

Let $A B C$ be a fixed triangle with circumcircle γ ，and let P be any point in its interior． Ray $A P$ meets γ again at A_{1} ．We reflect A_{1} across $\overline{B C}$ to obtain a point A_{2} ．Define B_{1} ， B_{2}, C_{1} and C_{2} similarly．Prove that the circumcircle of $A_{2} B_{2} C_{2}$ passes through a fixed point independent of P ．

We claim the fixed point is the orthocenter H ．（One might guess this by considering degenerate cases like $P=H$ ．）We present two solutions．（It is also possible to solve the problem using complex numbers with $A B C$ as the unit circle．）
－First elementary solution（Evan Chen）．Reflect A through the midpoint of $\overline{B C}$ to a point A_{3} ．Define B_{3} and C_{3} similarly Notice that B, H, A_{2}, C, A_{3} are concyclic，namely on the reflection of the circumcircle through $\overline{B C}$ ．Moreover，we have $\angle H A_{2} A_{3}=90^{\circ}$ ．

Notice that

$$
\angle B A A_{1}=\frac{1}{2} \widehat{B A_{1}}=\frac{1}{2} \widehat{B A_{2}}=\angle B A_{3} A_{2} .
$$

Hence we see，say by Trig Ceva，that the concurrence of lines $A A_{1}, B B_{1}, C C_{1}$ also implies the lines $A_{3} A_{2}, B_{3} B_{2}, C_{3} C_{2}$ are concurrent，say at Q ．（Alternatively，if you don＇t like trig：under the similarity $\triangle A B C \sim \triangle A_{3} B_{3} C_{3}$ let P_{3} be the image of P ．Then Q is the isogonal conjugate of P_{3} with respect to $\triangle A_{3} B_{3} C_{3}$ ．）Then A_{2} lies on a circle with diameter $\overline{H Q}$ ．So do B_{2} and C_{2} and the problem is solved．

ब Second solution by tethered moving points．We fix A_{1} and A_{2} ，and let P vary on line $A A_{1}$ ．Then the maps $B \mapsto \gamma \mapsto(B H C)$ by $P \mapsto B_{1} \mapsto B_{2}$ is projective，and similarly $P \mapsto C_{1} \mapsto C_{2}$ is projective．

Now，we use the＂second intersection of circles lemma＂to conclude that the map

$$
(H A C) \rightarrow(H A B) \quad \text { by } \quad B_{2} \mapsto\left(H A_{2} B_{2}\right) \cap(H A B) \neq H
$$

is a projective map（note that B_{2} is the only point which is moving here）．We claim this map coincides with the composed map $B_{2} \mapsto C_{2}$ ，and for this it suffices to verify it for three points：
－If $P=A$ ，then $A=B_{1}=B_{2}=C_{1}=C_{2}$ and we are okay．
－If $P=\overline{A A_{1}} \cap \overline{B C}$ then $B_{1}=B_{2}=C, C_{1}=C_{2}=B$ ，and since $B H A_{2} C$ is an isosceles trapezoid we are okay．
－If $P=A_{1}$ then in fact $A_{2} B_{2} C_{2}$ is the dilation of the Simson line from P with ratio 2 ，which is known to pass through the orthocenter．

§11i Sharygin 2013／15

Let $A B C$ be a triangle．
（a）Triangles $A_{1} B_{1} C_{1}$ and $A_{2} B_{2} C_{2}$ are inscribed into triangle $A B C$ so that $C_{1} A_{1} \perp B C$ ， $A_{1} B_{1} \perp C A, B_{1} C_{1} \perp A B, B_{2} A_{2} \perp B C, C_{2} B_{2} \perp C A, A_{2} C_{2} \perp A B$ ．Prove that these triangles are congruent．
（b）Points $A_{1}, B_{1}, C_{1}, A_{2}, B_{2}, C_{2}$ lie inside a triangle $A B C$ so that A_{1} is on segment $A B_{1}, B_{1}$ is on segment $B C_{1}, C_{1}$ is on segment $C A_{1}, A_{2}$ is on segment $A C_{2}, B_{2}$ is on segment $B A_{2}, C_{2}$ is on segment $C B_{2}$ ，and the angles $B A A_{1}, C B B_{2}, A C C_{1}$ ， $C A A_{2}, A B B_{2}, B C C_{2}$ are equal．Prove that the triangles $A_{1} B_{1} C_{1}$ and $A_{2} B_{2} C_{2}$ are congruent．

For part（a），observe that $\angle C_{1} A_{1} B_{1}=90^{\circ}-\left(90^{\circ}-\angle B_{1} C A_{1}\right)=\angle C$ ．Similar calcula－ tions yield that $\triangle A B C \sim \triangle C_{1} A_{1} B_{1} \sim \triangle B_{2} C_{2} A_{2}$ ．

Now，notice that by the Pythagorean Theorem，we have

$$
\begin{aligned}
& A_{1} B_{2}^{2}=B_{1} B_{2}^{2}+A_{1} B_{1}^{2}=A_{1} A_{2}^{2}+A_{2} B_{2}^{2} \\
& B_{1} C_{2}^{2}=C_{1} C_{2}^{2}+B_{1} C_{1}^{2}=B_{1} B_{2}^{2}+B_{2} C_{2}^{2} \\
& C_{1} A_{2}^{2}=A_{1} A_{2}^{2}+C_{1} A_{1}^{2}=C_{1} C_{2}^{2}+C_{2} A_{2}^{2}
\end{aligned}
$$

Summing，we obtain that

$$
A_{1} B_{1}^{2}+B_{1} C_{1}^{2}+C_{1} A_{1}^{2}=A_{2} B_{2}^{2}+B_{2} C_{2}^{2}+C_{2} A_{2}^{2}
$$

Since $\triangle C_{1} A_{1} B_{1} \sim \triangle B_{2} C_{2} A_{2}$ ，and the sums of the square of the sides are equal，it follows that the two triangles must be equal as well．

For part（b），easy angle chasing gives

$$
\angle B_{2} A_{2} C_{2}=\angle A B A_{2}+\angle B A A_{2}=\angle B A C .
$$

Similar calculations yield that $\triangle A_{1} B_{1} C_{1} \sim \triangle A_{2} B_{2} C_{2} \sim \triangle A B C$ ．
Now，let O be the circumcenter of $\triangle A B C$ ．Then O lies on the angle bisector of the angle formed by lines $B_{2} C_{2}$ and $B_{1} C_{1}$ ；namely，the line through O perpendicular to $B C$ ． （Note that $\angle B_{1} B C=C_{2} C B$ ．）Let d_{a} denote the command distance from O to lines $B_{2} C_{2}$ and $B_{1} C_{1}$ ．Define d_{b} and d_{c} analogously．

Then，since $A_{1} B_{1} C_{1} \sim A_{2} B_{2} C_{2}$ ，we observe that O must have the same barycentric coordinates with respect to $\triangle A_{1} B_{1} C_{1}$ and $\triangle A_{2} B_{2} C_{2}$ ，namely

$$
\left(d_{a} \cdot B_{1} C_{1}: d_{b} \cdot C_{1} A_{1}: d_{c} \cdot A_{1} B_{1}\right)=\left(d_{a} \cdot B_{2} C_{2}: d_{b} \cdot C_{2} A_{2}: d_{c} \cdot A_{2} B_{2}\right) .
$$

So O corresponds to the same point in both triangles．The congruence of the pedal triangles is then enough to deduce that $\triangle A_{1} B_{1} C_{1} \cong \triangle A_{2} B_{2} C_{2}$ ．

§11j Sharygin 2013／18

Let $\overline{A D}$ be a bisector of $\triangle A B C$ ．Points M and N are the projections of B and C respectively to $\overline{A D}$ ．The circle with diameter $\overline{M N}$ intersects $\overline{B C}$ at points X and Y ． Prove that $\angle B A X=\angle C A Y$ ．

Let B_{1} be the reflection of B over M（which is on $\overline{A C}$ ）and let P_{∞} be the point at infinity along $\overline{B M} \| \overline{C N}$ ．

Evidently

$$
-1=\left(B_{1}, B ; M, P_{\infty}\right) \stackrel{C}{=}(A, D ; M, N)
$$

But $\angle M Y N=\angle M X N=90^{\circ}$ ，so we find that M is the incenter of $\triangle A X Y$ ；hence $\angle X A M=\angle Y A M$ ，and hence $\angle B A X=\angle C A Y$ as desired．

§11k USA TST 2015／1

Let $A B C$ be a scalene triangle with incenter I whose incircle is tangent to $\overline{B C}, \overline{C A}, \overline{A B}$ at D, E, F ，respectively．Denote by M the midpoint of $\overline{B C}$ and let P be a point in the interior of $\triangle A B C$ so that $M D=M P$ and $\angle P A B=\angle P A C$ ．Let Q be a point on the incircle such that $\angle A Q D=90^{\circ}$ ．Prove that either $\angle P Q E=90^{\circ}$ or $\angle P Q F=90^{\circ}$ ．
（Available online at https：／／aops．com／community／p3683109．）

We present two solutions．

II Official solution．Assume without loss of generality that $A B<A C$ ；we show $\angle P Q E=90^{\circ}$ ．

First，we claim that D, P, E are collinear．Let N be the midpoint of $\overline{A B}$ ．It is well－known that the three lines $M N, D E, A I$ are concurrent at a point（see for example problem 6 of USAJMO 2014）．Let P^{\prime} be this intersection point，noting that P^{\prime} actually lies on segment $D E$ ．Then P^{\prime} lies inside $\triangle A B C$ and moreover

$$
\triangle D P^{\prime} M \sim \triangle D E C
$$

so $M P^{\prime}=M D$ ．Hence $P^{\prime}=P$ ，proving the claim．
Let S be the point diametrically opposite D on the incircle，which is also the second intersection of $\overline{A Q}$ with the incircle．Let $T=\overline{A Q} \cap \overline{B C}$ ．Then T is the contact point of the A－excircle；consequently，

$$
M D=M P=M T
$$

and we obtain a circle with diameter $\overline{D T}$ ．Since $\angle D Q T=\angle D Q S=90^{\circ}$ we have Q on this circle as well．

As $\overline{S D}$ is tangent to the circle with diameter $\overline{D T}$ ，we obtain

$$
\angle P Q D=\angle S D P=\angle S D E=\angle S Q E .
$$

Since $\angle D Q S=90^{\circ}, \angle P Q E=90^{\circ}$ too．
【 Solution using spiral similarity．We will ignore for now the point P ．As before define S, T and note $\overline{A Q S T}$ collinear，as well as $D P Q T$ cyclic on circle ω with diameter $\overline{D T}$ ．

Let τ be the spiral similarity at Q sending ω to the incircle．We have $\tau(T)=D$ ， $\tau(D)=S, \tau(Q)=Q$ ．Now

$$
I=\overline{D D} \cap \overline{Q Q} \Longrightarrow \tau(I)=\overline{S S} \cap \overline{Q Q}
$$

and hence we conclude $\tau(I)$ is the pole of $\overline{A S Q T}$ with respect to the incircle，which lies on line $E F$ ．

Then since $\overline{A I} \perp \overline{E F}$ too，we deduce τ sends line $A I$ to line $E F$ ，hence $\tau(P)$ must be either E or F as desired．

T Authorship comments．Written April 2014．I found this problem while playing with GeoGebra．Specifically，I started by drawing in the points A, B, C, I, D, M, T ，common points．I decided to add in the circle with diameter $D T$ ，because of the synergy it had with the rest of the picture．After a while of playing around，I intersected ray $A I$ with the circle to get P ，and was surprised to find that D, P, E were collinear，which I thought was impossible since the setup should have been symmetric．On further reflection，I realized it was because $A I$ intersected the circle twice，and set about trying to prove this． I noticed the relation $\angle P Q E=90^{\circ}$ in my attempts to prove the result，even though this ended up being a corollary rather than a useful lemma．

§11I EGMO 2014／2

Let D and E be points in the interiors of sides $A B$ and $A C$ ，respectively，of a triangle $A B C$ ，such that $D B=B C=C E$ ．Let the lines $C D$ and $B E$ meet at F ．Prove that the incenter I of triangle $A B C$ ，the orthocenter H of triangle $D E F$ and the midpoint M of the arc $B A C$ of the circumcircle of triangle $A B C$ are collinear．
（Available online at https：／／aops．com／community／p3459750．）
\｜First solution（Cynthia Du）．Let $B I$ and $C I$ meet the circumcircle again at M_{B} ， M_{C} ．Observe that we have the spiral congruence

$$
\triangle M D B \sim \triangle M E C
$$

from $\measuredangle M B D=\measuredangle M B A=\measuredangle M C A=\measuredangle M C E$ and $B D=E C, B M=C M$ ．That is，M is the Miquel point of $B D E C$ ．

Let $T=\overline{M E} \cap \overline{B I}$ and $S=\overline{M D} \cap \overline{C I}$ ．First，since $\overline{B I}$ is the perpendicular bisector of $\overline{C D}$ we have that

$$
\measuredangle D I T=\measuredangle C I T=\measuredangle C I B=90^{\circ}-\frac{1}{2} \angle A=\measuredangle M C B=\measuredangle M E D=\measuredangle T E D
$$

and so D, I, T, E is cyclic．Similarly S lies on this circle too．But $\measuredangle S D E=\measuredangle E D M=$ $\measuredangle M E D=\measuredangle T E D$ so in fact $\overline{S T} \| \overline{D E}$（isosceles trapezoid）．

Then $\triangle I S T$ and $\triangle H D E$ are homothetic，so $\overline{I H}, \overline{D S}$ ，and $\overline{E T}$ concur（at M ）．

T Second solution（Evan Chen）．Observe that we have the spiral congruence

$$
\triangle M D B \sim \triangle M E C
$$

from $\measuredangle M B D=\measuredangle M B A=\measuredangle M C A=\measuredangle M C E$ and $B D=E C, B M=C M$ ．That is，M is the Miquel point of $B D E C$ ．

Let X and Y be the midpoints of $\overline{B D}$ and $\overline{C E}$ ．Then $M X=M Y$ by our congruence． Consider now the circles with diameters $\overline{B D}$ and $\overline{C E}$ ．We now claim that H, I, M all lie on the radical axis of these circles．Note that I is the orthocenter of $\triangle B F C$ and H is the orthocenter of $\triangle D E F$ ，so this follows from the so－called Steiner line of $B C D E$ （perpendicular to Gauss line $\overline{X Y}$ ）．For M ，we observe $M X^{2}-X B^{2}=M Y^{2}-Y C^{2}$ thus completing the proof．

ब Third solution（homothety，official solution）．Extend $D H$ and $E H$ to meet $B I$ and $C I$ at D_{1} and E_{1} ．Note $D D_{1} \perp B E, C I \perp B E$ ，so $D D_{1} \| C I$ ．Similarly $E E_{1} \| B I$ ．So $H E_{1} I D_{1}$ ．

Angle chase to show that B, E_{1}, F, C are cyclic $-\angle D C E_{1}=\angle D C I$ is computable in terms of $A B C$ and

$$
\angle E_{1} B F=\angle E_{1} B E=\angle E_{1} E B=\angle H E F=\angle H D F=\angle H D C=\angle D C E_{1}=\angle F C E_{1}
$$

Thus B, D_{1}, F, C are also cyclic．So B, D_{1}, E_{1}, C are cyclic．
Extend $B I$ and $C I$ to meet the circumcircle again at D_{2} and E_{2} ．Direct computation gives that $M E_{2} I D_{2}$ is also a parallelogram．We also get $E_{1} D_{1}$ is parallel to $E_{2} D_{2}$（both are antiparallel to $B C$ through $\angle B I C)$ ．So we have homothetic paralellograms and that finishes the problem．

§11m OMO 2013 W49

In $\triangle A B C, C A=1960 \sqrt{2}, C B=6720$ ，and $\angle C=45^{\circ}$ ．Let K, L, M lie on lines $B C$ ， $C A$ ，and $A B$ such that $\overline{A K} \perp \overline{B C}, \overline{B L} \perp \overline{C A}$ ，and $A M=B M$ ．Let N, O, P lie on $\overline{K L}$ ， $\overline{B A}$ ，and $\overline{B L}$ such that $A N=K N, B O=C O$ ，and A lies on line $N P$ ．

If H is the orthocenter of $\triangle M O P$ ，compute $H K^{2}$ ．
（Available online at https：／／aops．com／community／p2906138．）

Let M^{\prime} be the midpoint of $\overline{A C}$ and let O^{\prime} be the circumcenter of $\triangle A B C$ ．Then $K M L M^{\prime}$ is cyclic（nine－point circle），as is $A M O^{\prime} M^{\prime}$（since $\angle M O A=\angle M M^{\prime} A=45^{\circ}$ ）． Also，$\angle B O^{\prime} A=90^{\circ}$ ，so O^{\prime} lies on the circle with diameter $\overline{A B}$ ．Then N is the radical center of these three circles；hence A, N, O^{\prime} are collinear．

Now applying Brokard＇s theorem to quadrilateral $B L A O^{\prime}$ ，we find that M is the orthocenter of the $O P H^{\prime}$ ，where $H^{\prime}=\overline{L A} \cap \overline{B O^{\prime}}$ ．Hence H^{\prime} is the orthocenter of $\triangle M O P$ ， whence $H=H^{\prime}=\overline{A C} \cap \overline{B O^{\prime}}$ ．

Now we know that

$$
\frac{A H}{H C}=\frac{c^{2}\left(a^{2}+b^{2}-c^{2}\right)}{a^{2}\left(b^{2}+c^{2}-a^{2}\right)}
$$

where the ratio is directed as in Menelaus＇s theorem．Cancelling a factor of 280^{2} we can compute：

$$
\frac{A H}{H C}=\frac{c^{2}\left(a^{2}+b^{2}-c^{2}\right)}{a^{2}\left(b^{2}+c^{2}-a^{2}\right)}=\frac{338(576+98-338)}{576(98+338-576)}=-\frac{169}{120} .
$$

Therefore，

$$
\begin{aligned}
\frac{A C}{H C} & =1+\frac{A H}{H C}=-\frac{49}{120} \\
\Longrightarrow|H C| & =\frac{120}{49} \cdot 1960 \sqrt{2}=4800 \sqrt{2} .
\end{aligned}
$$

Now applying the law of cosines to $\triangle K C H$ with $\angle K C H=135^{\circ}$ yields

$$
\begin{aligned}
H K^{2} & =K C^{2}+C H^{2}-2 K C \cdot C H \cdot \cos 135^{\circ} \\
& =1960^{2}+(4800 \sqrt{2})^{2}-2(1960)(4800 \sqrt{2})\left(-\frac{1}{\sqrt{2}}\right) \\
& =40^{2}\left(49^{2}+2 \cdot 120^{2}+2 \cdot 49 \cdot 120\right) \\
& =1600 \cdot 42961 \\
& =68737600 .
\end{aligned}
$$

§11n USAMO 2007／6

Let $A B C$ be an acute triangle with ω, S ，and R being its incircle，circumcircle，and circumradius，respectively．Circle ω_{A} is tangent internally to S at A and tangent externally to ω ．Circle S_{A} is tangent internally to S at A and tangent internally to ω ．

Let P_{A} and Q_{A} denote the centers of ω_{A} and S_{A} ，respectively．Define points P_{B}, Q_{B} ， P_{C}, Q_{C} analogously．Prove that

$$
8 P_{A} Q_{A} \cdot P_{B} Q_{B} \cdot P_{C} Q_{C} \leq R^{3}
$$

with equality if and only if triangle $A B C$ is equilateral．
（Available online at https：／／aops．com／community／p825515．）

It turns out we can compute $P_{A} Q_{A}$ explicitly．Let us invert around A with radius $s-a$（hence fixing the incircle）and then compose this with a reflection around the angle bisector of $\angle B A C$ ．We denote the image of the composed map via

$$
\bullet \mapsto \bullet^{*} \mapsto \bullet^{+} .
$$

We overlay this inversion with the original diagram．
Let $P_{A} Q_{A}$ meet ω_{A} again at P and S_{A} again at Q ．Now observe that ω_{A}^{*} is a line parallel to S^{*} ；that is，it is perpendicular to $\overline{P Q}$ ．Moreover，it is tangent to $\omega^{*}=\omega$ ．

Now upon the reflection，we find that $\omega^{+}=\omega^{*}=\omega$ ，but line $\overline{P Q}$ gets mapped to the altitude from A to $\overline{B C}$ ，since $\overline{P Q}$ originally contained the circumcenter O（isogonal to the orthocenter）．But this means that ω_{A}^{*} is none other than the $\overline{B C}$ ！Hence P^{+}is actually the foot of the altitude from A onto $\overline{B C}$ ．

By similar work，we find that Q^{+}is the point on $\overline{A P^{+}}$such that $P^{+} Q^{+}=2 r$ ．

Now we can compute all the lengths directly．We have that

$$
A P_{A}=\frac{1}{2} A P=\frac{(s-a)^{2}}{2 A P^{+}}=\frac{1}{2}(s-a)^{2} \cdot \frac{1}{h_{a}}
$$

and

$$
A Q_{A}=\frac{1}{2} A Q=\frac{(s-a)^{2}}{2 A Q^{+}}=\frac{1}{2}(s-a)^{2} \cdot \frac{1}{h_{a}-2 r}
$$

where $h_{a}=\frac{2 K}{a}$ is the length of the A－altitude，with K the area of $A B C$ as usual．Now it follows that

$$
P_{A} Q_{A}=\frac{1}{2}(s-a)^{2}\left(\frac{2 r}{h_{a}\left(h_{a}-2 r\right)}\right) .
$$

This can be simplified，as

$$
h_{a}-2 r=\frac{2 K}{a}-\frac{2 K}{s}=2 K \cdot \frac{s-a}{a s} .
$$

Hence

$$
P_{A} Q_{A}=\frac{a^{2} r s(s-a)}{4 K^{2}}=\frac{a^{2}(s-a)}{4 K} .
$$

Hence，the problem is just asking us to show that

$$
a^{2} b^{2} c^{2}(s-a)(s-b)(s-c) \leq 8(R K)^{3} .
$$

Using $a b c=4 R K$ and $(s-a)(s-b)(s-c)=\frac{1}{s} K^{2}=r K$ ，we find that this becomes

$$
2(s-a)(s-b)(s-c) \leq R K \Longleftrightarrow 2 r \leq R
$$

which follows immediately from $I O^{2}=R(R-2 r)$ ．Alternatively，one may rewrite this as Schur＇s Inequality in the form

$$
a b c \geq(-a+b+c)(a-b+c)(a+b-c) .
$$

§11o Sharygin 2013／19

Let $A B C$ be a triangle with circumcenter O and incenter I ．The incircle is tangent to sides $\overline{B C}, \overline{C A}, \overline{A B}$ at A_{0}, B_{0}, C_{0} ．Point L lies on $\overline{B C}$ so that $\angle B A L=\angle C A L$ ．The perpendicular bisector of $\overline{A L}$ meets $B I$ and $C I$ at Q and P ，respectively．Let C_{1} and B_{1} denote the projections of B and C onto lines $C I$ and $B I$ ．Let O_{1} and O_{2} denote the circumcenters of triangles $A B L$ and $A C L$ ．

Prove that the six lines $B C, P C_{0}, Q B_{0}, C_{1} O_{1}, B_{1} O_{2}$ ，and $O I$ are concurrent．

First，show that $B_{0}, B_{1}, C_{0}, C_{1}$ are collinear．This follows by angle chasing（it＇s EGMO Lemma 1．45）．Moreover，we can check that P is the midpoint of the minor arc $A L$ of the circumcircle of triangle $A C L$ ．In particular，A, P, C, L are concyclic．Similarly，A, Q ， B, L are concyclic．We also know that P, O_{1}, O_{2}, Q are clearly collinear．

By $\angle L P I=\angle L A C$ we observe that $\overline{L P} \perp \overline{B I}$ ．Similarly $\overline{L Q} \perp \overline{C I}$ ．This is enough to imply that

$$
\triangle A_{0} B_{0} C_{0} \sim \triangle L P Q
$$

are homothetic，with center K ．Thus we obtain that $B C, P C_{0}, Q B_{0}$ concur at at a point K ．Upon noticing that $C_{1} A_{0}=C_{1} B_{0}$ and $O_{1} Q=O_{1} L$（as well as $C_{1} \in \overline{B_{0} C_{0}}, O_{1} \in \overline{P Q}$ ） we find that C_{1} maps to O_{1} under the same homothety，meaning C_{1}, O_{1}, K are collinear． Similarly，B_{1}, O_{2}, K are collinear．

It remains to show that I, O, K are collinear．Let $M_{A} M_{B} M_{C}$ denote the arc midpoints on the circumcircle of $\triangle A B C$ ．Note that：
－We had already a positive homothety at K between $\triangle A_{0} B_{0} C_{0}$ and $\triangle P Q L$ ．
－There is evidently a homothety at I mapping $\triangle P Q L$ to $\triangle M_{c} M_{a} M_{b}$ ．
－There is by definition a homothety at X_{56} mapping (I) to (O) ．
So by Monge＇s theorem，K, I, X_{56} are collinear，and X_{56} lies on line $I O$ ，as desired．

§11p USA TST 2015／6

Let $A B C$ be a non－equilateral triangle and let M_{a}, M_{b}, M_{c} be the midpoints of the sides $B C, C A, A B$ ，respectively．Let S be a point lying on the Euler line．Denote by X, Y, Z the second intersections of $M_{a} S, M_{b} S, M_{c} S$ with the nine－point circle．Prove that $A X$ ， $B Y, C Z$ are concurrent．
（Available online at https：／／aops．com／community／p4628087．）

We assume now and forever that $A B C$ is scalene since the problem follows by symmetry in the isosceles case．We present four solutions．
－First solution by barycentric coordinates（Evan Chen）．Let $A X$ meet $M_{b} M_{c}$ at D ， and let X reflected over $M_{b} M_{c}$＇s midpoint be X^{\prime} ．Let $Y^{\prime}, Z^{\prime}, E, F$ be similarly defined．

By Cevian Nest Theorem it suffices to prove that $M_{a} D, M_{b} E, M_{c} F$ are concurrent． Taking the isotomic conjugate and recalling that $M_{a} M_{b} A M_{c}$ is a parallelogram，we see that it suffices to prove $M_{a} X^{\prime}, M_{b} Y^{\prime}, M_{c} Z^{\prime}$ are concurrent．

We now use barycentric coordinates on $\triangle M_{a} M_{b} M_{c}$ ．Let

$$
S=\left(a^{2} S_{A}+t: b^{2} S_{B}+t: c^{2} S_{C}+t\right)
$$

（possibly $t=\infty$ if S is the centroid）．Let $v=b^{2} S_{B}+t, w=c^{2} S_{C}+t$ ．Hence

$$
X=\left(-a^{2} v w:\left(b^{2} w+c^{2} v\right) v:\left(b^{2} w+c^{2} v\right) w\right)
$$

Consequently，

$$
X^{\prime}=\left(a^{2} v w:-a^{2} v w+\left(b^{2} w+c^{2} v\right) w:-a^{2} v w+\left(b^{2} w+c^{2} v\right) v\right)
$$

We can compute

$$
b^{2} w+c^{2} v=(b c)^{2}\left(S_{B}+S_{C}\right)+\left(b^{2}+c^{2}\right) t=(a b c)^{2}+\left(b^{2}+c^{2}\right) t
$$

Thus

$$
-a^{2} v+b^{2} w+c^{2} v=\left(b^{2}+c^{2}\right) t+(a b c)^{2}-(a b)^{2} S_{B}-a^{2} t=S_{A}\left((a b)^{2}+t\right)
$$

Finally

$$
X^{\prime}=\left(a^{2} v w: S_{A}\left(c^{2} S_{C}+t\right)\left((a b)^{2}+2 t\right): S_{A}\left(b^{2} S_{B}+t\right)\left((a c)^{2}+2 t\right)\right)
$$

and from this it＇s evident that $A X^{\prime}, B Y^{\prime}, C Z^{\prime}$ are concurrent．

ब Second solution by moving points（Anant Mudgal）．Let H_{a}, H_{b}, H_{c} be feet of altitudes，and let γ denote the nine－point circle．The main claim is that：

Claim－Lines $X H_{a}, Y H_{b}, Z H_{c}$ are concurrent，

Proof．In fact，we claim that the concurrence point lies on the Euler line ℓ ．This gives us a way to apply the moving points method：fix triangle $A B C$ and animate $S \in \ell$ ；then the map

$$
\begin{aligned}
& \ell \rightarrow \gamma \rightarrow \ell \\
& S \mapsto X \mapsto S_{a}:=\ell \cap \overline{H_{a} X}
\end{aligned}
$$

is projective，because it consists of two perspectivities．So we want the analogous maps $S \mapsto S_{b}, S \mapsto S_{c}$ to coincide．For this it suffices to check three positions of S ；since you＇re such a good customer here are four．
－If S is the orthocenter of $\triangle M_{a} M_{b} M_{c}$（equivalently the circumcenter of $\triangle A B C$ ） then S_{a} coincides with the circumcenter of $M_{a} M_{b} M_{c}$（equivalently the nine－point center of $\triangle A B C)$ ．By symmetry S_{b} and S_{c} are too．
－If S is the circumcenter of $\triangle M_{a} M_{b} M_{c}$（equivalently the nine－point center of $\triangle A B C$ ） then S_{a} coincides with the de Longchamps point of $\triangle M_{a} M_{b} M_{c}$（equivalently orthocenter of $\triangle A B C)$ ．By symmetry S_{b} and S_{c} are too．
－If S is either of the intersections of the Euler line with γ ，then $S=S_{a}=S_{b}=S_{c}$ （as $S=X=Y=Z$ ）．

This concludes the proof．

We now use Trig Ceva to carry over the concurrence．By sine law，

$$
\frac{\sin \angle M_{c} A X}{\sin \angle A M_{c} X}=\frac{M_{c} X}{A X}
$$

and a similar relation for M_{b} gives that

$$
\frac{\sin \angle M_{c} A X}{\sin \angle M_{b} A X}=\frac{\sin \angle A M_{c} X}{\sin \angle A M_{b} X} \cdot \frac{M_{c} X}{M_{b} X}=\frac{\sin \angle A M_{c} X}{\sin \angle A M_{b} X} \cdot \frac{\sin \angle X M_{a} M_{c}}{\sin \angle X M_{a} M_{b}} .
$$

Thus multiplying cyclically gives

$$
\prod_{\text {cyc }} \frac{\sin \angle M_{c} A X}{\sin \angle M_{b} A X}=\prod_{\text {cyc }} \frac{\sin \angle A M_{c} X}{\sin \angle A M_{b} X} \prod_{\text {cyc }} \frac{\sin \angle X M_{a} M_{c}}{\sin \angle X M_{a} M_{b}} .
$$

The latter product on the right－hand side equals 1 by Trig Ceva on $\triangle M_{a} M_{b} M_{c}$ with cevians $\overline{M_{a} X}, \overline{M_{b} Y}, \overline{M_{c} Z}$ ．The former product also equals 1 by Trig Ceva for the concurrence in the previous claim（and the fact that $\angle A M_{c} X=\angle H_{c} H_{a} X$ ）．Hence the left－hand side equals 1 ，implying the result．
－Third solution by moving points（Gopal Goel）．In this solution，we will instead use barycentric coordinates with resect to $\triangle A B C$ to bound the degrees suitably，and then verify for seven distinct choices of S ．

We let R denote the radius of $\triangle A B C$ ，and N the nine－point center．
First，imagine solving for X in the following way．Suppose $\vec{X}=\left(1-t_{a}\right) \vec{M}_{a}+t_{a} \vec{S}$ ． Then，using the dot product（with $|\vec{v}|^{2}=\vec{v} \cdot \vec{v}$ in general）

$$
\begin{aligned}
\frac{1}{4} R^{2} & =|\vec{X}-\vec{N}|^{2} \\
& =\left|t_{a}\left(\vec{S}-\vec{M}_{a}\right)+\vec{M}_{a}-\vec{N}\right|^{2} \\
& =\left|t_{a}\left(\vec{S}-\vec{M}_{a}\right)\right|^{2}+2 t_{a}\left(\vec{S}-\vec{M}_{a}\right) \cdot\left(\vec{M}_{a}-\vec{N}\right)+\left|\vec{M}_{a}-\vec{N}\right|^{2} \\
& =t_{a}^{2}\left|\left(\vec{S}-\vec{M}_{a}\right)\right|^{2}+2 t_{a}\left(\vec{S}-\vec{M}_{a}\right) \cdot\left(\vec{M}_{a}-\vec{N}\right)+\frac{1}{4} R^{2}
\end{aligned}
$$

Since $t_{a} \neq 0$ we may solve to obtain

$$
t_{a}=-\frac{2\left(\vec{M}_{a}-\vec{N}\right) \cdot\left(\vec{S}-\vec{M}_{a}\right)}{\left|\vec{S}-\vec{M}_{a}\right|^{2}} .
$$

Now imagine S varies along the Euler line，meaning there should exist linear functions $\alpha, \beta, \gamma: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
S=(\alpha(s), \beta(s), \gamma(s)) \quad s \in \mathbb{R}
$$

with $\alpha(s)+\beta(s)+\gamma(s)=1$ ．Thus $t_{a}=\frac{f_{a}}{g_{a}}=\frac{f_{a}(s)}{g_{a}(s)}$ is the quotient of a linear function $f_{a}(s)$ and a quadratic function $g_{a}(s)$ ．

So we may write：

$$
\begin{aligned}
X & =\left(1-t_{a}\right)\left(0, \frac{1}{2}, \frac{1}{2}\right)+t_{a}(\alpha, \beta, \gamma) \\
& =\left(t_{a} \alpha, \frac{1}{2}\left(1-t_{a}\right)+t_{a} \beta, \frac{1}{2}\left(1-t_{a}\right)+t_{a} \gamma\right) \\
& =\left(2 f_{a} \alpha: g_{a}-f_{a}+2 f_{a} \beta: g_{a}-f_{a}+2 f_{a} \gamma\right) .
\end{aligned}
$$

Thus the coordinates of X are quadratic polynomials in s when written in this way．
In a similar way，the coordinates of Y and Z should be quadratic polynomials in s ． The Ceva concurrence condition

$$
\prod_{\text {cyc }} \frac{g_{a}-f_{a}+2 f_{a} \beta}{g_{a}-f_{a}+2 f_{a} \gamma}=1
$$

is thus a polynomial in s of degree at most six．Our goal is to verify it is identically zero， thus it suffices to check seven positions of S ．
－If S is the circumcenter of $\triangle M_{a} M_{b} M_{c}$（equivalently the nine－point center of $\triangle A B C$ ） then $\overline{A X}, \overline{B Y}, \overline{C Z}$ are altitudes of $\triangle A B C$ ．
－If S is the centroid of $\triangle M_{a} M_{b} M_{c}$（equivalently the centroid of $\triangle A B C$ ），then $\overline{A X}$ ， $\overline{B Y}, \overline{C Z}$ are medians of $\triangle A B C$ ．
－If S is either of the intersections of the Euler line with γ ，then $S=X=Y=Z$ and all cevians concur at S ．
－If S lies on the $\overline{M_{a} M_{b}}$ ，then $Y=M_{a}, X=M_{c}$ ，and thus $\overline{A X} \cap \overline{B Y}=C$ ，which is of course concurrent with $\overline{C Z}$（regardless of Z ）．Similarly if S lies on the other sides of $\triangle M_{a} M_{b} M_{c}$ ．

Thus we are also done．
－Fourth solution using Pascal（official one）．We give a different proof of the claim that $\overline{X H_{a}}, \overline{Y H_{b}}, \overline{Z H_{c}}$ are concurrent（and then proceed as in the end of the second solution）．

Let H denote the orthocenter，N the nine－point center，and moreover let N_{a}, N_{b}, N_{c} denote the midpoints of $\overline{A H}, \overline{B H}, \overline{C H}$ ，which also lie on the nine－point circle（and are the antipodes of M_{a}, M_{b}, M_{c} ．
－By Pascal＇s theorem on $M_{b} N_{b} H_{b} M_{c} N_{c} H_{c}$ ，the point $P=\overline{M_{c} H_{b}} \cap \overline{M_{b} H_{c}}$ is collinear with $N=\overline{M_{b} N_{b}} \cap \overline{M_{c} N_{c}}$ ，and $H=\overline{N_{b} H_{b}} \cap \overline{N_{c} H_{c}}$ ．So P lies on the Euler line．
－By Pascal＇s theorem on $M_{b} Y H_{b} M_{c} Z H_{c}$ ，the point $\overline{Y H_{b}} \cap \overline{Z H_{c}}$ is collinear with $S=\overline{M_{b} Y} \cap \overline{M_{c} Z}$ and $P=\overline{M_{b} H_{c}} \cap \overline{M_{c} H_{b}}$ ．Hence $Y H_{b}$ and $Z H_{c}$ meet on the Euler line，as needed．

§11q Iran TST 2009／9

Let $A B C$ be a triangle with incenter I and intouch triangle $D E F$ ．Let M be the foot of the perpendicular from D to $\overline{E F}$ and let P be the midpoint of $\overline{D M}$ ．If H is the orthocenter of triangle $B I C$ ，prove that $\overline{P H}$ bisects $\overline{E F}$ ．
（Available online at https：／／aops．com／community／p1499412．）

Let N be the midpoint of $\overline{E F}$ ，and set $B_{1}=\overline{E F} \cap \overline{H C}, C_{1}=\overline{E F} \cap \overline{H B}$ ．Focus on triangle $D B_{1} C_{1}$ ．

It＇s known that $\triangle D B_{1} C_{1}$ is the orthic triangle of $\triangle H B C$（by EGMO Lemma 1．45）． Moreover，N is the tangency point of its incircle with $\overline{B_{1} C_{1}}$ ．In addition，H is the D－excenter．Finally，because of altitude midpoints，points P, N ，and H are collinear．

§11r IMO 2011／6

Let $A B C$ be an acute triangle with circumcircle Γ ．Let ℓ be a tangent line to Γ ，and let $\ell_{a}, \ell_{b}, \ell_{c}$ be the lines obtained by reflecting ℓ in the lines $B C, C A$ ，and $A B$ ，respectively． Show that the circumcircle of the triangle determined by the lines ℓ_{a}, ℓ_{b} ，and ℓ_{c} is tangent to the circle Γ ．
（Available online at https：／／aops．com／community／p2365045．）

This is a hard problem with many beautiful solutions．The following solution is not very beautiful but not too hard to find during an olympiad，as the only major insight it requires is the construction of A_{2}, B_{2} ，and C_{2} ．

We apply complex numbers with ω the unit circle and $p=1$ ．Let $A_{1}=\ell_{B} \cap \ell_{C}$ ，and let $a_{2}=a^{2}$（in other words，A_{2} is the reflection of P across the diameter of ω through $A)$ ．Define the points $B_{1}, C_{1}, B_{2}, C_{2}$ similarly．

We claim that $\overline{A_{1} A_{2}}, \overline{B_{1} B_{2}}, \overline{C_{1} C_{2}}$ concur at a point on Γ ．
We begin by finding A_{1} ．If we reflect the points $1+i$ and $1-i$ over $\overline{A B}$ ，then we get two points Z_{1}, Z_{2} with

$$
\begin{aligned}
& z_{1}=a+b-a b(1-i)=a+b-a b+a b i \\
& z_{2}=a+b-a b(1+i)=a+b-a b-a b i .
\end{aligned}
$$

Therefore，

$$
\begin{aligned}
z_{1}-z_{2} & =2 a b i \\
\overline{z_{1}} z_{2}-\overline{z_{2}} z_{1} & =-2 i\left(a+b+\frac{1}{a}+\frac{1}{b}-2\right) .
\end{aligned}
$$

Now ℓ_{C} is the line $\overline{Z_{1} Z_{2}}$ ，so with the analogous equation ℓ_{B} we obtain：

$$
\begin{aligned}
a_{1} & =\frac{-2 i\left(a+b+\frac{1}{a}+\frac{1}{b}-2\right)(2 a c i)+2 i\left(a+c+\frac{1}{a}+\frac{1}{c}-2\right)(2 a b i)}{\left(-\frac{2}{a b} i\right)(2 a c i)-\left(-\frac{2}{a c} i\right)(2 a b i)} \\
& =\frac{[c-b] a^{2}+\left[\frac{c}{b}-\frac{b}{c}-2 c+2 b\right] a+(c-b)}{\frac{c}{b}-\frac{b}{c}} \\
& =a+\frac{(c-b)\left[a^{2}-2 a+1\right]}{(c-b)(c+b) / b c} \\
& =a+\frac{b c}{b+c}(a-1)^{2} .
\end{aligned}
$$

Then the second intersection of $\overline{A_{1} A_{2}}$ with ω is given by

$$
\frac{a_{1}-a_{2}}{1-a_{2} \overline{a_{1}}}=\frac{a+\frac{b c}{b+c}(a-1)^{2}-a^{2}}{1-a-a^{2} \cdot \frac{(1-1 / a)^{2}}{b+c}}
$$

$$
\begin{aligned}
& =\frac{a+\frac{b c}{b+c}(1-a)}{1-\frac{1}{b+c}(1-a)} \\
& =\frac{a b+b c+c a-a b c}{a+b+c-1} .
\end{aligned}
$$

Thus，the claim is proved．
Finally，it suffices to show $\overline{A_{1} B_{1}} \| \overline{A_{2} B_{2}}$ ．One can also do this with complex numbers； it amounts to showing $a^{2}-b^{2}, a-b, i$（corresponding to $\overline{A_{2} B_{2}}, \overline{A_{1} B_{1}}, \overline{P P}$ ）have their arguments an arithmetic progression，equivalently

$$
\frac{(a-b)^{2}}{i\left(a^{2}-b^{2}\right)} \in \mathbb{R} \Longleftrightarrow \frac{(a-b)^{2}}{i\left(a^{2}-b^{2}\right)}=\frac{\left(\frac{1}{a}-\frac{1}{b}\right)^{2}}{\frac{1}{i}\left(\frac{1}{a^{2}}-\frac{1}{b^{2}}\right)}
$$

which is obvious．
Remark．One can use directed angle chasing for this last part too．Let $\overline{B C}$ meet ℓ at K and $\overline{B_{2} C_{2}}$ meet ℓ at L ．Evidently

$$
\begin{aligned}
-\measuredangle B_{2} L P & =\measuredangle L P B_{2}+\measuredangle P B_{2} L \\
& =2 \measuredangle K P B+\measuredangle P B_{2} C_{2} \\
& =2 \measuredangle K P B+2 \measuredangle P B C \\
& =-2 \measuredangle P K B \\
& =\measuredangle P K B_{1}
\end{aligned}
$$

as required．

§11s Taiwan TST 2014／3J／3

Let $A B C$ be a triangle with circumcircle Γ and let M be an arbitrary point on Γ ．Suppose the tangents from M to the incircle of $A B C$ intersect $\overline{B C}$ at two distinct points X_{1} and X_{2} ．Prove that the circumcircle of triangle $M X_{1} X_{2}$ passes through the tangency point of the A－mixtilinear incircle with Γ ．
（Available online at https：／／aops．com／community／p3551881．）

We know that the line $T I$ passes through the midpoint of arc $\widehat{B C}$ containing A ；call this point L ．

Set $D E F$ as the intouch triangle of $A B C$ ．Let K_{1} and K_{2} be the contact points of the tangents from M（so that X_{1} lies on $\overline{M K_{1}}$ and X_{2} lies on $\overline{M K_{2}}$ ）and perform an inversion around the incircle．As usual we denote the inverse with a star．Now A^{*}, B^{*} ， C^{*} are respectively the midpoints of $\overline{E F}, \overline{F D}, \overline{D E}$ ，and as usual $\Gamma^{*}=\left(A^{*} B^{*} C^{*}\right)$ is the nine－point circle of $\triangle D E F$ ．

Clearly M^{*} is an arbitrary point on Γ^{*} ；moreover，it is the midpoint of $\overline{K_{1} K_{2}}$ ．Now let us determine the location of T^{*} ．Now we claim T^{*} is the point diametrically opposite A^{*} on Γ^{*} ．We see that L^{*} is some point also on Γ^{*} ．Moreover，

$$
\measuredangle I L^{*} A^{*}=-\measuredangle I A L=90^{\circ} .
$$

But because L, I, T are collinear it follows that L^{*}, I^{*}, T^{*} are collinear，whence

$$
\measuredangle T L^{*} A^{*}=\measuredangle I^{*} L^{*} A^{*}=90^{\circ}
$$

as desired．That means it is also the midpoint of $\overline{D H}$ ，where H is the orthocenter of triangle $D E F$ ．

It is now time to prove that $M^{*}, X_{1}^{*}, X_{2}^{*}, T^{*}$ are concyclic．Dilating by a factor of 2 at D ，it is equivalent to prove that D^{\prime}, K_{1}, K_{2} ，and H are concyclic，where D^{\prime} is the reflection of D over M^{*} ．Reflecting around M^{*} it is equivalent to prove that D, K_{2}, K_{1} ， and H^{\prime} are concyclic．

But the circumcircle of D, K_{2} and K_{1} is just Γ^{*} itself．Moreover our usual homothety between the nine－point circle Γ^{*} and the incircle implies that H^{\prime} lies on Γ^{*} as well．So D ， K_{2}, K_{1}, H^{\prime} are concyclic on Γ^{*} ．Thus M, X_{1}, X_{2} ，and T are concyclic，which is what we wanted to show．

§11t Taiwan Quiz 2015／3J／6

In scalene triangle $A B C$ with incenter I ，the incircle is tangent to sides $C A$ and $A B$ at points E and F ．The tangents to the circumcircle of $\triangle A E F$ at E and F meet at S ． Lines $E F$ and $B C$ intersect at T ．Prove that the circle with diameter $\overline{S T}$ is orthogonal to the nine－point circle of triangle BIC．
（Available online at https：／／aops．com／community／p5087419．）

Let D be the foot from I to $\overline{B C}$ ．Let X, Y denote the feet from B, C to $C I$ and $B I$ ． We can show that BIFX，CIEY are cyclic，so that X and Y lie on $\overline{E F}$ ．Now let M be the midpoint of $\overline{B C}$ ，and ω the circumcircle of $D M X Y$ ．The problem reduces to showing that S lies on the polar of T to ω ．

Let $K=\overline{A M} \cap \overline{E F}$ ．It＇s well known（say by SL 2005 G 6 ）that points K, I, D are collinear．Let N be the midpoint of $\overline{E F}$ ，and $L=\overline{K S} \cap \overline{B C}$ ．From

$$
-1=(A I ; N S) \stackrel{K}{=}(T L ; M D)
$$

and

$$
-1=(T D ; B C) \stackrel{I}{=}(T K ; Y X)
$$

we find that $T=\overline{M D} \cap \overline{Y X}$ is the pole of line $\overline{K L}$ with respect to ω ，completing the proof．

Remark．August Chen notes that it＇s possible to prove $(T K ; X Y)=-1$ by constructing the orthocenter H of $\triangle B I C$ ，and using the Ceva／Menelaus lemma on $\triangle H X Y$ ．

II Authorship comments．This problem was constructed backwards．The points X ， Y, K were added because I knew already that they led to the nice configuration in question．I then tried to see if I could construct any nice harmonic quadrilaterals．I already had $(T K ; X Y)$ ，so I took the other harmonic conjugate and thus arrived at L ． The construction of S followed after that；it was the result of projecting through K onto the angle bisector．Thus arrived the problem，which had an astonishingly short formulation．

A Generating Code

§A. 1 Database dump script (Python)

```
import sys
import yaml
from von import api
from typing import Any
with open('data.yaml') as f:
    data: list[dict[str, Any]] = yaml.load(f,
        Loader=yaml.SafeLoader)
print(r'''\documentclass[11pt]{scrreprt}
\usepackage[sexy]{evan}
\renewcommand{\thesection}{\thechapter\alph{section}}
\usepackage{epigraph}
\renewcommand{\epigraphsize}{\scriptsize}
\renewcommand{\epigraphwidth}{60ex}
\begin{document}
\title{Auto-Generated EGMO Solutions Treasury}
\maketitle
\tableofcontents
' ' ')
for d in data:
    problems: list[str] = d['problems']
    chapter_name: str = d['name']
    print(r'\chapter{Solutions for %s}' % chapter_name)
    print(r'\epigraph{%s}{%s}' % (d['quote'],
        d['quote_source']))
    for key in problems:
        if not api.has(key):
            print("MISSING", key, 'from chapter', d['chapter'],
                file=sys.stderr)
        else:
                print(r'\section{%s}' % key)
                print(api.get_statement(key))
                if (url := api.get(key).url) is not None:
                    print(
                                    r'\par\medskip\noindent\textsf{\footnotesize
                                    (Available online at'
                            '\n'
                r'\url{' + url + '}.)}')
                print('\n')
                print(r'\hrulebar')
                print('\n')
                print(api.get_solution(key))
                print('\n')
```

```
print(r'''\appendix
\renewcommand{\thesection}{\thechapter.\arabic{section}}
\chapter{Generating Code}
\section{Database dump script (Python)}
\lstinputlisting[language=Python]{compile.py}
\newpage
\section{Input data}
\lstinputlisting{data.yaml}
\end{document}'''')
```


§A． 2 Input data

```
- chapter: 1
    name: Angle Chasing
    quote: |
        I won't go easy on you, and I hope you won't go easy on me,
            either.
    quote_source: |
    Serral to Bunny before their semifinals match at
    \emph{DreamHack Starcraft 2 Masters} Atlanta 2022
    problems:
        - BAMO 1999/2
        - CGMO 2012/5
        - Canada 1991/3
        - Russia 1996/10.1
        - JMO 2011/5
        - Canada 1997/4
        - IMO 2006/1
        - USAMO 2010/1
        - IMO 2013/4
        - IMO 1985/1
- chapter: 2
    name: Circles
    quote: |
            \\
        \bigskip
            \emph{I've waited here every day \\
            But I 'dont know if I can tomorrow as well}
    quote_source: |
            \emph{Lullaby}, by Dreamcatcher
    problems:
            - USAMO 1990/5
            - BAMO 2012/4
            - JMO 2012/1
            - IMO 2008/1
            - USAMO 1997/2
            - IMO 1995/1
            - USAMO 1998/2
            - IMO 2000/1
            - Canada 1990/3
            - IMO 2009/2
            - Canada 2007/5
            - Iran TST 2011/1
    chapter: 3
    name: Lengths and Ratios
    quote: |
            I don't know what's weirder --- that you're fighting a
            stuffed animal,
            or that you seem to be losing.
    quote_source: |
            Susie Derkins, in \emph{Calvin and Hobbes}
    problems:
```

```
53 - Shortlist 2006 G3
4 - BAMO 2013/3
    - USAMO 2003/4
    - USAMO 1993/2
    - EGMO 2013/1
    - APMO 2004/2
    - Shortlist 2001 G1
    - TSTST 2011/4
    - USAMO 2015/2
- chapter: 4
    name: Assorted Configurations
    quote: |
        We should switch from 5 answer choices to 6 answer choices
        so we can just bubble a lot of F's to express our feelings.
    quote_source: |
        Evan's reaction to the AMC edVistas website
    problems:
        - Hong Kong 1998
        - Shortlist 2003 G2
        - USAMO 1988/4
        - USAMO 1995/3
        - USA TST 2014/1
        - USA TST 2011/1
        - ELMO SL 2013 G7
        - USAMO 2011/5
        - Japan 2009
        - Vietnam TST 2003/2
        - Sharygin 2013/16
        - APMO 2012/4
        - Shortlist 2002 G7
- chapter: 5
    name: Computational Geometry
    quote: |
        We both know we don't want to be here, so let's get this
            over with.
    quote_source: |
        Xiaoyu He, during a MOP 2013 test review
    problems:
        - APMO 2013/1
        - EGMO 2013/1
        - USAMO 2010/4
        - Iran 1999
        - CGMO 2002/4
        - IMO 2007/4
        - JMO 2013/5
        - CGMO 2007/5
        - Shortlist 2011 G1
        - IMO 2001/1
        - IMO 2001/5
        - IMO 2001/6
    chapter: 6
    name: Complex Numbers
    quote: |
```

```
08 The real fun of living wisely is that you get to be smug
        about it.
    quote_source: |
    Hobbes, in \emph{Calvin and Hobbes}
    problems:
    - China TST 2011/2/1
    - USAMO 2015/2
    - China TST 2006/4/1
    - USA TST 2014/5
    - OMO 2013 F26
    - IMO 2009/2
    - APMO 2010/4
    - Shortlist 2006 G9
    - MOP 2006/4/1
    - Shortlist 1998 G6
    - ELMO SL 2013 G7
    chapter: 7
    name: Barycentric Coordinates
    quote: |
    I don't care if you're a devil in disguise!
    I love you all the same!
    quote_source: |
    Misa Amane, in \emph{Death Note: The Last Name}
    problems:
    - IMO 2014/4
    - EGMO 2013/1
    - ELMO SL 2013 G3
    - IMO 2012/1
    - Shortlist 2001 G1
    - USA TST 2008/7
    - USAMO 2001/2
    - TSTST 2012/7
    - December TST 2012/1
    - Sharygin 2013/20
    - APMO 2013/5
    - USAMO 2005/3
    - Shortlist 2011 G2
    - Romania TST 2010/6/2
    - ELMO 2012/5
    - USA TST 2004/4
    - TSTST 2012/2
    - IMO 2004/5
    - Shortlist 2006 G4
    chapter: 8
    name: Inversion
    quote: |
    Humans are like high templar.
    They're fragile, weak, and cause storms when they're mad.
    And they love giving feedback to others
    despite being unable to receive feedback themselves.
    quote_source: ""
    problems:
    - BAMO 2011/4
    - Iran }199
    - Shortlist 2003 G4
```

```
    - NIMO 2014
    - EGMO 2013/5
    - Russia 2009/10.2
    - Shortlist 1997/9
    - IMO 1993/2
    - IMO 1996/2
    - IMO 2015/3
    - ELMO Shortlist 2013 # FGOB
    chapter: 9
    name: Projective Geometry
    quote: |
        I don't think Jane Street would appreciate
        all their thousands of dollars going to fruit snacks.
    quote_source: |
    Debbie Lee, at MOP 2022
    problems:
        - TSTST 2012/4
        - Singapore TST
        - Canada 1994/5
        - Bulgaria 2001
        - ELMO SL 2012 G3
        - IMO 2014/4
        - Shortlist 2004 G8
        - Sharygin 2013/16
        - Shortlist 2004 G2
        - January TST 2013/2
        - Brazil 2011/5
        - ELMO SL 2013 G3
        - APMO 2008/3
        - ELMO SL 2014 G2 # AC / BD / GH
        - ELMO Shortlist 2014 # GI, HJ, B-symmedian
        - Shortlist 2005 G6
    chapter: 10
    name: Complete Quadrilaterals
    quote: |
        \\
        \emph{Look at the sky, 'Ill leave a piece containing my
            heart there \\
            So, call me when the time comes}
quote_source: |
            \emph{PLEASE PLEASE}, by EVERGLOW
problems:
            - NIMO 2014
            - USAMO 2013/1
            - Shortlist 1995 G8
            - USA TST 2007/1
            - USAMO 2013/6
            - USA TST 2007/5
            - IMO 2005/5
            - USAMO 2006/6
            - Balkan 2009/2
            - TSTST 2012/7
            - TSTST 2012/2
```

```
220 - USA TST 2009/2
    - Shortlist 2009 G4
    - Shortlist 2006 G9
    - Shortlist 2005 G5
chapter: 11
    name: Personal Favorites
    quote: |
    How do you \emph{accidentally} rob a bank??
    quote_source: |
        \emph{RWBY Chibi}, Season 3, Episode 1
    problems:
        - Canada 2000/4
        - EGMO 2012/1
        - ELMO 2013/4
        - Sharygin 2012
        - USAMTS 3/3/24
        - MOP 2012
        - Sharygin 2013/21
        - ELMO 2012/1
        - Sharygin 2013/14
        - Bulgaria 2012
        - Sharygin 2013/15
        - Sharygin 2013/18
        - USA TST 2015/1
        - EGMO 2014/2
        - OMO 2013 W49
        - USAMO 2007/6
        - Sharygin 2013/19
        - USA TST 2015/6
        - Iran TST 2009/9
        - IMO 2011/6
        - Taiwan TST 2014/3J/3
        - Taiwan Quiz 2015/3J/6
```


[^0]: ${ }^{1}$ In fact，if you really want to do the computation you can check that $\mathcal{N}-\bar{p} \mathcal{D}=-s_{4} \bar{p}^{3}+p^{2} \bar{p}+s_{3} \bar{p}^{2}-$ $s_{2} \bar{p}+\bar{p}+2 p+s-1$ ．But we will not need to do anything with this expression other than notice that it is symmetric．

