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1 Solutions for Angle Chasing

I won’t go easy on you, and I hope you won’t go easy on
me, either.

Serral to Bunny before their semifinals match at
DreamHack Starcraft 2 Masters Atlanta 2022

§1a CGMO 2012/5
Let ABC be a triangle. The incircle of 4ABC has center I and is tangent to AB and
AC at D and E respectively. Let O denote the circumcenter of 4BCI. Prove that
∠ODB = ∠OEC.

(Available online at https://aops.com/community/p2769872.)

By Fact 5, O is the midpoint of arc BC, and so it’s immediate that 4ADO ∼= 4AEO
which implies the result.

A

B C

O

I

D

E

§1b Canada 1991/3
Let P be a point inside circle ω. Consider chords of ω passing through P . Prove that
the midpoints of these chords all lie on a fixed circle.

(Available online at https://aops.com/community/p2445591.)

Letting O be the center of the circle, the midpoints lie on the circle with diameter OP .
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§1c Russia 1996/10.1
Points E and F are given on side BC of convex quadrilateral ABCD (with E closer
than F to B). It is known that ∠BAE = ∠CDF and ∠EAF = ∠FDE. Prove that
∠FAC = ∠EDB.

(Available online at https://aops.com/community/p3025732.)

This is a direct angle chase. First, the problem tells us that AEFD is cyclic.

A

B C

D

E F

Claim — Quadrilateral ABCD is cyclic too.

Proof. Note that

]DCB = ]DCF = ]CDF + ]DFC

= ]EAB + ]DFE = ]EAB + ]DAE = ]DAB.

To finish,

]FAC = ]BAC − (]BAE + ]EAF ) = ]BDC − (]FDC + ]EDF ) = ]EDB.

§1d JMO 2011/5
Points A,B,C,D,E lie on a circle ω and point P lies outside the circle. The given points
are such that (i) lines PB and PD are tangent to ω, (ii) P,A,C are collinear, and (iii)
DE ‖ AC. Prove that BE bisects AC.

(Available online at https://aops.com/community/p2254813.)

We present two solutions.
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¶ First solution using harmonic bundles. Let M = BE ∩AC and let ∞ be the point
at infinity along DE ‖ AC.

B

D E

P AMC

Note that ABCD is harmonic, so

−1 = (AC;BD)
E
= (AC;M∞)

implying M is the midpoint of AC.

¶ Second solution using complex numbers (Cynthia Du). Suppose we let b, d, e be
free on unit circle, so p = 2bd

b+d . Then d/c = a/e, and a+ c = p+ acp. Consequently,

ac = de

1

2
(a+ c) =

bd

b+ d
+ de · 1

b+ d
=

d(b+ e)

b+ d
.

a+ c

2ac
=

(b+ e)

e(b+ d)
.

From here it’s easy to see
a+ c

2
+

a+ c

2ac
· be = b+ e

which is what we wanted to prove.

§1e IMO 2006/1
Let ABC be a triangle with incenter I. A point P in the interior of the triangle satisfies

∠PBA+ ∠PCA = ∠PBC + ∠PCB.

Show that AP ≥ AI and that equality holds if and only if P = I.

(Available online at https://aops.com/community/p571966.)

The condition rewrites as

∠PBC+∠PCB = (∠B−∠PBC)+(∠C−∠PCB) =⇒ ∠PBC+∠PCB =
∠B + ∠C

2
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which means that

∠BPC = 180◦ − ∠B + ∠C
2

= 90◦ +
∠A
2

= ∠BIC.

Since P and I are both inside 4ABC that implies P lies on the circumcircle of 4BIC.
It’s well-known (by “Fact 5”) that the circumcenter of 4BIC is the arc midpoint M

of B̂C. Therefore

AI + IM = AM ≤ AP + PM =⇒ AI ≤ AP

with equality holding iff A, P , M are collinear, or P = I.

§1f USAMO 2010/1
Let AXY ZB be a convex pentagon inscribed in a semicircle of diameter AB. Denote
by P , Q, R, S the feet of the perpendiculars from Y onto lines AX, BX, AZ, BZ,
respectively. Prove that the acute angle formed by lines PQ and RS is half the size of
∠XOZ, where O is the midpoint of segment AB.

(Available online at https://aops.com/community/p1860802.)

Let T be the foot from Y to AB. Then the Simson line implies that lines PQ and RS
meet at T .

A B

X

Y
Z

P

Q
R

S

T

Now it’s straightforward to see APY RT is cyclic (in the circle with diameter AY ),
and therefore

∠RTY = ∠RAY = ∠ZAY.

Similarly,
∠Y TQ = ∠Y BQ = ∠Y BX.

Summing these gives ∠RTQ is equal to half the measure of arc X̂Z as needed.
(Of course, one can also just angle chase; the Simson line is not so necessary.)
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§1g IMO 2013/4
Let ABC be an acute triangle with orthocenter H, and let W be a point on the side BC,
between B and C. The points M and N are the feet of the altitudes drawn from B and
C, respectively. Suppose ω1 is the circumcircle of triangle BWN and X is a point such
that WX is a diameter of ω1. Similarly, ω2 is the circumcircle of triangle CWM and
Y is a point such that WY is a diameter of ω2. Show that the points X, Y , and H are
collinear.

(Available online at https://aops.com/community/p5720174.)

We present two solutions, an elementary one and then an advanced one by moving
points.

¶ First solution, classical. Let P be the second intersection of ω1 and ω2; this is the
Miquel point, so P also lies on the circumcircle of AMN , which is the circle with diameter
AH.

A

B C

M

N

W

H
P

X

Y

We now contend:

Claim — Points P , H, X collinear. (Similarly, points P , H, Y are collinear.)

Proof using power of a point. By radical axis on BNMC, ω1, ω2, it follows that A, P ,
W are collinear. We know that ∠APH = 90◦, and also ∠XPW = 90◦ by construction.
Thus P , H, X are collinear.

Proof using angle chasing. This is essentially Reim’s theorem:

]NPH = ]NAH = ]BAH = ]ABX = ]NBX = ]NPX

as desired. Alternatively, one may prove A, P , W are collinear by ]NPA = ]NMA =
]NMC = ]NBC = ]NBW = ]NPW .
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¶ Second solution, by moving points. Fix 4ABC and vary W . Let ∞ be the point
at infinity perpendicular to BC for brevity.

By spiral similarity, the point X moves linearly on B∞ as W varies linearly on BC.
Similarly, so does Y . So in other words, the map

X 7→W 7→ Y

is linear. However, the map
X 7→ Y ′ := XH ∩ C∞

is linear too.
To show that these maps are the same, it suffices to check it thus at two points.

• When W = B, the circle (BNW ) degenerates to the circle through B tangent to
BC, and X = CN ∩B∞. We have Y = Y ′ = C.

• When W = C, the result is analogous.

• Although we don’t need to do so, it’s also easy to check the result if W is the foot
from A since then XHWB and Y HWC are rectangles.

§1h IMO 1985/1
A circle has center on the side AB of the cyclic quadrilateral ABCD. The other three
sides are tangent to the circle. Prove that AD +BC = AB.
(Available online at https://aops.com/community/p366584.)

Let T be the point such that DA = AT .

Claim — T lies on (DOC).

Proof. Because

∠DCO =
1

2
∠DCB =

1

2
(180◦ − ∠BAD) = 90◦ − 1

2
∠TAD = ∠DTA.

D

A B

C

OT

11

https://aops.com/community/p366584


Evan Chen《陳誼廷》 — 31 January 2024 Auto-Generated EGMO Solutions Treasury

Reversing the previous proof on the other side gives BC = BT . So AB = AT + TB =
AD +BC.

12



2 Solutions for Circles

이 자리에서 매일 기다렸지만
내일도 그럴 자신이 나는 없는 걸요

I’ve waited here every day
But I don’t know if I can tomorrow as well

Lullaby, by Dreamcatcher

§2a USAMO 1990/5
An acute-angled triangle ABC is given in the plane. The circle with diameter AB
intersects altitude CC ′ and its extension at points M and N , and the circle with diameter
AC intersects altitude BB′ and its extensions at P and Q. Prove that M , N , P , Q are
concyclic.

(Available online at https://aops.com/community/c6h58273p356630.)

Let T be the foot of the altitude from A, and let H be the orthocenter. Apparently

HM ·HN = HA ·HT = HP ·HQ

so we’re done by powerc of a point.

Remark. Since AB and AC are the perpendicular bisectors of MN and PQ the circumcircle
of MNPQ coincides with the point A.

§2b JMO 2012/1
Given a triangle ABC, let P and Q be points on segments AB and AC, respectively,
such that AP = AQ. Let S and R be distinct points on segment BC such that S lies
between B and R, ∠BPS = ∠PRS, and ∠CQR = ∠QSR. Prove that P , Q, R, S are
concyclic.

(Available online at https://aops.com/community/p2669111.)

Assume for contradiction that (PRS) and (QRS) are distinct. Then RS is the radical
axis of these two circles. However, AP is tangent to (PRS) and AQ is tangent to (QRS),
so point A has equal power to both circles, which is impossible since A does not lie on
line BC.

§2c IMO 2008/1
Let H be the orthocenter of an acute-angled triangle ABC. The circle ΓA centered at
the midpoint of BC and passing through H intersects the sideline BC at points A1 and
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A2. Similarly, define the points B1, B2, C1, and C2. Prove that six points A1, A2, B1,
B2, C1, C2 are concyclic.

(Available online at https://aops.com/community/p1190553.)

Let D, E, F be the centers of ΓA, ΓB , ΓC (in other words, the midpoints of the sides).
We first show that B1, B2, C1, C2 are concyclic. It suffices to prove that A lies on the

radical axis of the circles ΓB and ΓC .

A

B CD

EF

H

X

B1

B2

C1

C2

Let X be the second intersection of ΓB and ΓC . Clearly XH is perpendicular to the
line joining the centers of the circles, namely EF . But EF ‖ BC, so XH ⊥ BC. Since
AH ⊥ BC as well, we find that A, X, H are collinear, as needed.

Thus, B1, B2, C1, C2 are concyclic. Similarly, C1, C2, A1, A2 are concyclic, as are A1,
A2, B1, B2. Now if any two of these three circles coincide, we are done; else the pairwise
radical axii are not concurrent, contradiction. (Alternatively, one can argue directly that
O is the center of all three circles, by taking the perpendicular bisectors.)

§2d USAMO 1997/2
Let ABC be a triangle. Take noncollinear points D, E, F on the perpendicular bisectors
of BC, CA, AB respectively. Show that the lines through A, B, C perpendicular to EF ,
FD, DE respectively are concurrent.

(Available online at https://aops.com/community/p210283.)

The three lines are the radical axii of the three circles centered at D, E, F , so they
concur.

§2e IMO 1995/1
Let A, B, C, D be four distinct points on a line, in that order. The circles with diameters
AC and BD meet at X and Y . The line XY meets BC at Z. Let P be a point on the
line XY other than Z. The line CP intersects the circle with diameter AC at C and
M , and the line BP intersects the circle with diameter BD at B and N . Prove that the
lines AM , DN , XY are concurrent.

14

https://aops.com/community/p1190553
https://aops.com/community/p210283


Evan Chen《陳誼廷》 — 31 January 2024 Auto-Generated EGMO Solutions Treasury

(Available online at https://aops.com/community/p365179.)

Note that:

Claim — MBCN is cyclic.

Proof. From PB · PN = PX · PY = PC · PM .

Claim (Russia 1996/10.1) — AMND is cyclic.

Proof. ]DAM = ]CAM = 90◦−]MCB = 90◦−]MNB = 90◦+]BNM = ]DNM .

A D

M

N

CB

T

P

Then the conclusion follows by radical axis on (AC), (BD), (AMND).

§2f USAMO 1998/2
Let C1 and C2 be concentric circles, with C2 in the interior of C1. From a point A on C1
one draws the tangent AB to C2 (B ∈ C2). Let C be the second point of intersection of
ray AB and C1, and let D be the midpoint of AB. A line passing through A intersects
C2 at E and F in such a way that the perpendicular bisectors of DE and CF intersect
at a point M on line AB. Find, with proof, the ratio AM/MC.

(Available online at https://aops.com/community/p343866.)

By power of a point we have

AE ·AF = AB2 =

(
1

2
AB

)
· (2AB) = AD ·AC

and hence CDEF is cyclic. Then M is the circumcenter of quadrilateral CDEF .
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A

C

B

D

M

O
E

F

Thus M is the midpoint of CD (and we are given already that B is the midpoint of AC,
D is the midpoint of AB). Thus a quick computation along AC gives AM/MC = 5/3.

§2g IMO 2000/1
Two circles G1 and G2 intersect at two points M and N . Let AB be the line tangent to
these circles at A and B, respectively, so that M lies closer to AB than N . Let CD be
the line parallel to AB and passing through the point M , with C on G1 and D on G2.
Lines AC and BD meet at E; lines AN and CD meet at P ; lines BN and CD meet at
Q. Show that EP = EQ.

(Available online at https://aops.com/community/p354110.)

First, we have ]EAB = ]ACM = ]BAM and similarly ]EBA = ]BDM = ]ABM .
Consequently, AB bisects ∠EAM and ∠EBM , and hence 4EAB ∼= 4MAB.

M

N

A

B

C

D

E

P

Q
T

Now it is well-known that MN bisects AB and since AB ‖ PQ we deduce that M
is the midpoint of PQ. As AB is the perpendicular bisector of EM , it follows that
EP = EQ as well.
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§2h IMO 2009/2
Let ABC be a triangle with circumcenter O. The points P and Q are interior points
of the sides CA and AB respectively. Let K, L, M be the midpoints of BP , CQ, PQ,
respectively, and let Γ be the circumcircle of 4KLM . Suppose that PQ is tangent to Γ.
Prove that OP = OQ.

(Available online at https://aops.com/community/p1561572.)

By power of a point, we have −AQ · QB = OQ2 − R2 and −AP · PC = OP 2 − R2.
Therefore, it suffices to show AQ ·QB = AP · PC.

A

B C

P

Q

M

K

L

As ML ‖ AC and MK ‖ AB we have that

]APQ = ]LMP = ]LKM

]PQA = ]KMQ = ]MLK

and consequently we have the (opposite orientation) similarity

4APQ
−∼ 4MKL.

Therefore
AQ

AP
=

ML

MK
=

2ML

2MK
=

PC

QB

id est AQ ·QB = AP · PC, which is what we wanted to prove.

§2i Canada 2007/5
Let the incircle of triangle ABC touch sides BC, CA, and AB at D, E, and F , respectively.
Let ω, ω1, ω2, and ω3 denote the circumcircles of triangles ABC, AEF , BDF , and CDE
respectively. Let ω and ω1 intersect at A and P , ω and ω2 intersect at B and Q, ω and
ω3 intersect at C and R. Show that lines PD, QE, and RF are concurrent.

(Available online at https://aops.com/community/p894696.)

We present two solutions, one just by angle chasing, and another tricky one using
spiral similarity. Inversion at the incircle also works very well.
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¶ First solution (angle chasing).

Claim — Quadrilaterals PEDQ, QFER, PFDR are all cyclic.

Proof. Angle chase:

]QPE = ]QPA+ ]APE

= ]QPA+ ]AIE

= ]QBA+ ]ABI + ]IDE

= ]QBI + ]IDE

= ]QDI + ]IDE

= ]QDE.

This is apparently much harder than I remember, seeing that it took me half an hour to
write down.

We’re now done by radical axis.

¶ Second solution (spiral similarity, Ryan Kim). We note that:

Claim — Line PD bisects ∠BPC, and thus passes through the arc midpoint X of
B̂C.

Proof. The spiral similarity gives PB/PC = BF/EC = BD/DC.

Now consider the positive homothety mapping the incircle to the circumcircle, centered
at the so-called X56. This homothety maps D to X, so we have X56 is collinear with
DX. Hence PD passes through X56 as desired.

§2j Iran TST 2011/1
Let ABC be a triangle with ∠B > ∠C. Let M denote the midpoint of BC and let D
and E denote the feet of the altitude from C and B respectively. Let K and L denote
the midpoints of ME and MD respectively. If KL intersect the line through A parallel
to BC at point T , prove that TA = TM .

(Available online at https://aops.com/community/p2266382.)

It’s well-known that MD, ME, AT are all tangent to (ADE); see chapter 1 of the
EGMO textbook, “three tangents” lemma.
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A

B CM

D

E

K

L

T

Now line KL is the radical axis of (AED) and the circle centered at M of radius zero.
So by power of a point,

TM2 = Pow(AED)(T ) = TA2.
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3 Solutions for Lengths and Ratios

I don’t know what’s weirder — that you’re fighting a
stuffed animal, or that you seem to be losing.

Susie Derkins, in Calvin and Hobbes

§3a Shortlist 2006 G3
Let ABCDE be a convex pentagon such that

∠BAC = ∠CAD = ∠DAE and ∠ABC = ∠ACD = ∠ADE.

Diagonals BD and CE meet at P . Prove that ray AP bisects CD.

(Available online at https://aops.com/community/p741369.)

Let X denote the intersection of diagonals AC and BD. Let Y denote the intersection
of diagonals AD and CE.

A

C D

B

E

X Y

P

M

The given conditions imply that4ABC ∼ 4ACD ∼ 4ADE. From this it follows that
quadrilaterals ABCD and ACDE are similar. In particular, we have that AX

XC = AY
Y D .

Now let ray AP meet CD at M . Then Ceva’s theorem applied to triangle ACD implies
that AX

XC ·
CM
MD ·

DY
Y A = 1, so CM = MD.

§3b USAMO 2003/4
Let ABC be a triangle. A circle passing through A and B intersects segments AC and
BC at D and E, respectively. Lines AB and DE intersect at F , while lines BD and CF
intersect at M . Prove that MF = MC if and only if MB ·MD = MC2.

(Available online at https://aops.com/community/p336205.)

Ceva theorem plus the similar triangles.
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CD

M

F

B

E

A

We know unconditionally that

]CBD = ]EBD = ]EAD = ]EAC.

Moreover, by Ceva’s theorem on 4BCF , we have MF = MC ⇐⇒ FC ‖ AE. So we
have the equivalences

MF = MC ⇐⇒ FC ‖ AE

⇐⇒ ]FCA = ]EAC

⇐⇒ ]MCD = ]CBD

⇐⇒ MC2 = MB ·MD.

§3c USAMO 1993/2
Let ABCD be a quadrilateral whose diagonals are perpendicular and meet at E. Prove
that the reflections of E across the sides of ABCD are concyclic.

(Available online at https://aops.com/community/p356408.)

Let W , X, Y , Z be the reflections across AB, BC, CD, DA and let W ′, X ′, Y ′, Z ′

be the midpoints of EW , EX, EY , EZ; in other words, the feet of the perpendiculars
from E to the respective sides. By a homothety, to prove that W , X, Y , Z are concyclic,
it suffices to prove W ′, X ′, Y ′, Z ′ are concyclic.
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A

B

C

D
E

W ′

X ′

Y ′

Z ′

W

X

Y

Z

We can do this with just angle chasing. Since EW ′BX ′ and EX ′CY ′ are cyclic,

∠W ′X ′Y ′ = ∠W ′X ′E + ∠EX ′Y ′ = ∠W ′BE + ∠ECY ′ = ∠ABE + ∠ECD.

Similarly,
∠Y ′Z ′W ′ = ∠BAE + ∠EDC.

Then,

∠W ′X ′Y ′ + ∠Y ′Z ′W ′ = (∠ABE + ∠BAE) + (∠EDC + ∠EDC) = 90◦ + 90◦ = 180◦.

Hence W ′, X ′, Y ′, Z ′ are cyclic, as needed.

§3d EGMO 2013/1
The side BC of the triangle ABC is extended beyond C to D so that CD = BC. The
side CA is extended beyond A to E so that AE = 2CA. Prove that if AD = BE then
the triangle ABC is right-angled.
(Available online at https://aops.com/community/p3013167.)

Let ray DA meet BE at M . Consider the triangle EBD. Since the point lies on
median EC, and EA = 2AC, it follows that A is the centroid of 4EBD.

A

B C
D

E

M
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So M is the midpoint of BE. Moreover MA = 1
2AD = 1

2BE; so MA = MB = ME
and hence 4ABE is inscribed in a circle with diameter BE. Thus ∠BAE = 90◦, so
∠BAC = 90◦.

§3e APMO 2004/2
Let O be the circumcenter and H the orthocenter of an acute triangle ABC. Prove that
the area of one of the triangles AOH, BOH and COH is equal to the sum of the areas
of the other two.

(Available online at https://aops.com/community/p15307.)

It’s actually true with line OH replaced by any line ` through the centroid G; in that
case the directed sum of distances from A, B, C to ` is equal to zero.

Indeed, assume ` intersects segments AB and AC. If M is the midpoint of BC then

d(B, `) + d(C, `) = 2d(M, `) = d(A, `)

by homothety. The end.
Tristan Shin points out that another way to see this is just directly by barycentric

coordinates; indeed we have

[AOH] + [BOH] + [COH] =
1

128K2

∑
cyc

det

 1 0 0
a2SA b2SB c2SC

SBC SCA SAB


=

1

128K2
det

 1 1 1
a2SA b2SB c2SC

SBC SCA SAB


= 0

again since the centroid lies on line OH.

§3f TSTST 2011/4
Acute triangle ABC is inscribed in circle ω. Let H and O denote its orthocenter
and circumcenter, respectively. Let M and N be the midpoints of sides AB and AC,
respectively. Rays MH and NH meet ω at P and Q, respectively. Lines MN and PQ
meet at R. Prove that OA ⊥ RA.

(Available online at https://aops.com/community/p2374848.)

Let MH and NH meet the nine-point circle again at P ′ and Q′, respectively. Recall
that H is the center of the homothety between the circumcircle and the nine-point circle.
From this we can see that P and Q are the images of this homothety, meaning that

HQ = 2HQ′ and HP = 2HP ′.

Since M , P ′, Q′, N are cyclic, Power of a Point gives us

MH ·HP ′ = HN ·HQ′.
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Multiplying both sides by two, we thus derive

HM ·HP = HN ·HQ.

It follows that the points M , N , P , Q are concyclic.

A

B C

H
O

M N

P

Q

R

Q′

P ′

Let ω1, ω2, ω3 denote the circumcircles of MNPQ, AMN , and ABC, respectively.
The radical axis of ω1 and ω2 is line MN , while the radical axis of ω1 and ω3 is line PQ.
Hence the line R lies on the radical axis of ω2 and ω3.

But we claim that ω2 and ω3 are internally tangent at A. This follows by noting the
homothety at A with ratio 2 sends M to B and N to C. Hence the radical axis of ω2

and ω3 is a line tangent to both circles at A.
Hence RA is tangent to ω3. Therefore, RA ⊥ OA.

§3g USAMO 2015/2
Quadrilateral APBQ is inscribed in circle ω with ∠P = ∠Q = 90◦ and AP = AQ < BP .
Let X be a variable point on segment PQ. Line AX meets ω again at S (other than A).
Point T lies on arc AQB of ω such that XT is perpendicular to AX. Let M denote the
midpoint of chord ST .

As X varies on segment PQ, show that M moves along a circle.

(Available online at https://aops.com/community/p4769957.)

We present three solutions, one by complex numbers, two more synthetic. (A fourth
solution using median formulas is also possible.) Most solutions will prove that the center
of the fixed circle is the midpoint of AO (with O the center of ω); this can be recovered
empirically by letting

• X approach P (giving the midpoint of BP )

• X approach Q (giving the point Q), and

• X at the midpoint of PQ (giving the midpoint of BQ)

which determines the circle; this circle then passes through P by symmetry and we can
find the center by taking the intersection of two perpendicular bisectors (which two?).
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¶ Complex solution (Evan Chen). Toss on the complex unit circle with a = −1, b = 1,
z = −1

2 . Let s and t be on the unit circle. We claim Z is the center.
It follows from standard formulas that

x =
1

2
(s+ t− 1 + s/t)

thus
4Rex+ 2 = s+ t+

1

s
+

1

t
+

s

t
+

t

s

which depends only on P and Q, and not on X. Thus

4

∣∣∣∣z − s+ t

2

∣∣∣∣2 = |s+ t+ 1|2 = 3 + (4Rex+ 2)

does not depend on X, done.

¶ Homothety solution (Alex Whatley). Let G, N , O denote the centroid, nine-point
center, and circumcenter of triangle AST , respectively. Let Y denote the midpoint of
AS. Then the three points X, Y , M lie on the nine-point circle of triangle AST , which
is centered at N and has radius 1

2AO.

A

B

S

T

O

XP Q

M

G
N

Y

Let R denote the radius of ω. Note that the nine-point circle of 4AST has radius
equal to 1

2R, and hence is independent of S and T . Then the power of A with respect to
the nine-point circle equals

AN2 −
(
1

2
R

)2

= AX ·AY =
1

2
AX ·AS =

1

2
AQ2

and hence

AN2 =

(
1

2
R

)2

+
1

2
AQ2

which does not depend on the choice of X. So N moves along a circle centered at A.
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Since the points O, G, N are collinear on the Euler line of 4AST with

GO =
2

3
NO

it follows by homothety that G moves along a circle as well, whose center is situated
one-third of the way from A to O. Finally, since A, G, M are collinear with

AM =
3

2
AG

it follows that M moves along a circle centered at the midpoint of AO.

¶ Power of a point solution (Zuming Feng, official solution). We complete the picture
by letting 4KYX be the orthic triangle of 4AST ; in that case line XY meets the ω
again at P and Q.

A

B

S T

O

X

M

Y

K

P

Q

V

The main claim is:

Claim — Quadrilateral PQKM is cyclic.

Proof. To see this, we use power of a point: let V = QXY P ∩ SKMT . One approach is
that since (V K;ST ) = −1 we have V Q ·V P = V S ·V T = V K ·VM . A longer approach
is more elementary:

V Q · V P = V S · V T = V X · V Y = V K · VM

using the nine-point circle, and the circle with diameter ST .

But the circumcenter of PQKM , is the midpoint of AO, since it lies on the perpendicular
bisectors of KM and PQ. So it is fixed, the end.
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4 Solutions for Assorted Configurations

We should switch from 5 answer choices to 6 answer choices
so we can just bubble a lot of F’s to express our feelings.

Evan’s reaction to the AMC edVistas website

§4a Shortlist 2003 G2
Three distinct points A, B, and C are fixed on a line in this order. Let Γ be a circle
passing through A and C whose center does not lie on the line AC. Denote by P the
intersection of the tangents to Γ at A and C. Suppose Γ meets the segment PB at Q.
Prove that the intersection of the bisector of ∠AQC and the line AC does not depend
on the choice of Γ.

(Available online at https://aops.com/community/p19089.)

Note that QP is a symmedian of 4AQC, so

AB

BC
=

AQ2

CQ2

so AQ/CQ is fixed, and done by angle bisector theorem.

§4b USAMO 1988/4
Let I be the incenter of triangle ABC, and let A′, B′, and C ′ be the circumcenters of
triangles IBC, ICA, and IAB, respectively. Prove that the circumcircles of triangles
ABC and A′B′C ′ are concentric.

(Available online at https://aops.com/community/c6h420561p2375323.)

It’s known that A′ is the midpoint of minor arc BC along the circumcircle ABC. So
not only are the desired circles obviously concentric, they are in fact the same circle. . .

§4c USAMO 1995/3
Given a scalene nonright triangle ABC, let O denote the center of its circumscribed
circle, and let A1, B1, and C1 be the midpoints of the sides. Point A2 is located on the
ray OA1 so that 4OAA1 is similar to 4OA2A. Points B2 and C2 on rays OB1 and OC1,
respectively, are defined similarly. Prove that lines AA2, BB2, and CC2 are concurrent.

(Available online at https://aops.com/community/p143328.)

As A2 is the intersection of the tangents to the circumcircle at B and C, it follows line
AA2 is a symmedian. And the three symmedians concur at the symmedian point.
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§4d USA TST 2014/1
Let ABC be an acute triangle, and let X be a variable interior point on the minor arc
BC of its circumcircle. Let P and Q be the feet of the perpendiculars from X to lines
CA and CB, respectively. Let R be the intersection of line PQ and the perpendicular
from B to AC. Let ` be the line through P parallel to XR. Prove that as X varies along
minor arc BC, the line ` always passes through a fixed point.

(Available online at https://aops.com/community/p3332310.)

The fixed point is the orthocenter, since ` is a Simson line. See Lemma 4.4 of Euclidean
Geometry in Math Olympiads.

§4e USA TST 2011/1
In an acute scalene triangle ABC, points D, E, F lie on sides BC, CA, AB, respectively,
such that AD ⊥ BC,BE ⊥ CA,CF ⊥ AB. Altitudes AD, BE, CF meet at orthocenter
H. Points P and Q lie on line EF such that AP ⊥ EF and HQ ⊥ EF . Lines DP and
QH intersect at point R. Compute HQ/HR.

(Available online at https://aops.com/community/p2374795.)

The answer is 1.
To see this, focus just on triangle DEF . As H is the incenter and A is the D-excenter,

the points Q and P are the respective contact points of the incircle and D-excircle. So R
is the antipode of Q along the incircle.

§4f ELMO SL 2013 G7
Let ABC be a triangle inscribed in circle ω, and let the medians from B and C intersect
ω at D and E respectively. Let O1 be the center of the circle through D tangent to AC
at C, and let O2 be the center of the circle through E tangent to AB at B. Prove that
O1, O2, and the nine-point center of ABC are collinear.

(Available online at https://aops.com/community/p3151965.)

We use complex numbers with (ABC) the unit circle.
To compute D, note that since the midpoint of AC lies on chord BD, we should have

b+ d =
a+ c

2
+ bd · a+ c

2ac
=⇒ d =

a+c
2 − b

1− b(a+c)
2ac

=
ac(a+ c− 2b)

2ac− b(a+ c)
.

We now seek to compute O1. Let O denote the circumcircle. Note that since 4AOD ∼
4DCO1 we have

o1 − d

c− d
=
−d
a− d

so

o1 =
d(a− d)− d(c− d)

a− d
=

d(a− c)

a− d
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=
ac(a+ c− 2b)(a− c)

a(2ac− b(a+ c))− ac(a+ c− 2b)

=
c(a+ c− 2b)(a− c)

ac− ab+ bc− c2
=

c(a+ c− 2b)

c− b
.

Similarly o2 =
b(a+b−2c)

b−c . We now find that

o1 + o2
2

=
b(a+ b− 2c)− c(a+ c− 2b)

2(b− c)
=

a+ b+ c

2

so in fact the nine-point center is the midpoint of O1 and O2.

§4g USAMO 2011/5
Let P be a point inside convex quadrilateral ABCD. Points Q1 and Q2 are located
within ABCD such that

∠Q1BC = ∠ABP, ∠Q1CB = ∠DCP,

∠Q2AD = ∠BAP, ∠Q2DA = ∠CDP.

Prove that Q1Q2 ‖ AB if and only if Q1Q2 ‖ CD.

(Available online at https://aops.com/community/p2254841.)

If AB ‖ CD there is nothing to prove. Otherwise let X = AB ∩ CD. Then the Q1

and Q2 are the isogonal conjugates of P with respect to triangles XBC and XAD. Thus
X, Q1, Q2 are collinear, on the isogonal of XP with respect to ∠DXA = ∠CXB.

§4h Japan 2009
Triangle ABC has circumcircle Γ. A circle with center O is tangent to BC at P and
internally to Γ at Q, so that Q lies on arc BC of Γ not containing A. Prove that if
∠BAO = ∠CAO then ∠PAO = ∠QAO.

We present two solutions.

¶ First solution by standard methods. Let M and L be the midpoints of the arcs BC
of Γ where M lies on the opposite side of line BC as A.
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B C

L

M

Q

P

O

A

We claim that the points P , Q, L are collinear. To see this, one could note that an
inversion at L with radius LB = LC swaps points P and Q. Alternatively, we take
a homothety at Q mapping the circle with center O to Γ; since BC is a tangent, this
necessarily takes Q to L.

In any case, we can now note that OP and LM are parallel (since they are both
perpendicular to BC), and by assumption points A, O, M are collinear. It follows that
APOQ is cyclic, as

∠AQP = ∠AQL = ∠AML = ∠AOP.

But PO = QO, so ∠PAO = ∠QAO.

¶ Second solution by inversion. A
√
bc inversion swaps Γ and line BC. However, it

also preserves line AO, since ∠BAO = ∠CAO. This is enough to imply that the circle
(O) is preserved (not the point O itself), since its center remains on the ∠A-bisector, and
it remains tangent to both Γ and line BC.

Thus, P and Q are swapped by
√
bc inversion, as needed.

§4i Vietnam TST 2003/2
Let ABC be a scalene triangle, and denote by O and I the circumcenter and incenter.
Let A0 be the midpoint of the A-altitude, and define B0 and C0 similarly. Suppose the
incircle is tangent to the sides BC, CA, AB at points D, E, F . Prove that lines A0D,
B0E, C0F are concurrent with line OI.

Let IA, IB, IC be the excenters of the triangle. It’s known that IAD passes through
the midpoint A0, and thus we can consider the problem in terms of this triangle instead.
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A

B C

O
I

D

E

F

IA

IB

IC

A0

L

Let L be the circumcenter of IAIBIC . Note that DEF and IAIBIC are homothetic,
since EF and IBIC are both perpendicular to the A-bisector. Therefore, the lines DIA,
EIB, FIC concur at a single point X. Moreover, X, I, L are collinear. (In fact X is the
exsimilicenter of the circumcircles.)

It remains to show I, O, L are collinear, but this follows by noting that they are the
orthocenter, nine-point center, and circumcenter of triangle IAIBIC , respectively.

§4j Sharygin 2013/16
The incircle of 4ABC touches BC, CA, AB at points A′, B′ and C ′ respectively. The
perpendicular from the incenter I to the C-median meets the line A′B′ in point K. Prove
that CK ‖ AB.

Let ω be the circumcircle of 4A′B′C and let K ′ be the intersection of line A′B′ with
the line through C parallel to AB. Furthermore, let Z be the foot of the perpendicular
from I to CM and observe that Z ∈ ω. It suffices to prove that ∠K ′ZL is right, because
this will imply K ′ = K.
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C

A B

I

C ′

A′

B′

M

K ′

Z

L

Let P∞ be the point at infinity on line AB. Then the quadruple (A,B;M,P∞) is clearly
harmonic. Taking perspectivity from C onto line A′B′ we observe that (B′, A′;L,K ′) is
harmonic.

Now consider point Z. Observe that ZL is an angle bisector of ∠BZA′, since B′C =
A′C implies the arcs B′C and A′C are equal. Since we have a harmonic bundle, we
conclude that LZ ⊥ K ′Z as desired.

§4k APMO 2012/4
Let ABC be an acute triangle. Denote by D the foot of the A-altitude, by M the midpoint
of BC, and by H the orthocenter of triangle ABC. Ray MH meets the circumcircle Γ
of triangle ABC again at E. Line ED meets Γ again at F . Prove that

BF

CF
=

AB

AC
.

(Available online at https://aops.com/community/p2648114.)

The conclusion is a contrived way of saying:

Claim — AF is the A-symmedian of 4ABC.

Proof of main claim. It’s well known that ∠AEM = 90◦, since the second internsection
of EHM is the A-antipode. That means MDEA is cyclic.
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A

B CD M

H

E

F

Now,

]BAF = ]BEF = ]EBC + ]BDE = ]EBC − ]EDM

= ]EAC − ]EAM = ]MAC.

§4l Shortlist 2002 G7
The incircle Ω of the acute-angled triangle ABC is tangent to its side BC at a point
K. Let AD be an altitude of triangle ABC, and let M be the midpoint of AD. If N
is the common point of the circle Ω and KM (distinct from K), then prove Ω and the
circumcircle of triangle BCN are tangent to each other.

(Available online at https://aops.com/community/p118682.)

We present three solutions, two synthetic and one harmonic.

¶ First solution (from EGMO). Let IA be the A-excenter tangent to line BC at T .
Define P to be the midpoint of KIA. Let r be the radius of the incircle and ra the radius
of the A-excircle.
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A

B C

I

D

M

K

N

IA

T

P

It is well-known that M , K and IA are collinear. We claim that NBPC is cyclic; it
suffices to prove that 2BK · KC = 2KP · KN = KN · KIA. On the other hand, by
Power of a Point we have that

IAK (IAK +KN) = II2A − r2 =⇒ KN ·KIA = II2A − r2 − IAK
2.

Now we need only simplify the right-hand side using the Pythagorean Theorem; it is(
(r + ra)

2 +KT 2
)
− r2 −

(
r2a +KT 2

)
= 2rra.

So it suffices to prove rra = (s− b)(s− c), which is not hard.
Now, since P is the midpoint of minor arc B̂C of (NBC) (via BK = CT ), while the

incircle is tangent to segment BC at K, the conclusion follows readily.

¶ Second solution using power of a point (Haroon Khan). Define P as the midpoint
of KIA as before. As noted already, N , M , K, P , IA are collinear.

Claim — We have
PB2 = PK · PN = PC2

or equivalently that P is the radical center of (I), (B), (C) (the latter two circles
having radius zero).

Proof. Consider the K-midline of 4KBIA, which we denote `. We claim it is the radical
axis of (B) and (I). Indeed, ` ‖ BIA ⊥ BI, and the midpoint of BK clearly lies on this
radical axis, as needed.

So P lies on the radical axis of (B) and (I); symmetrically it lies on the radical axis of
(C) and (I), done.
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This implies P is the arc midpoint of B̂C in (BCN). Since the incircle is tangent to BC
at K, it follows that N is the common tangency point requested.

¶ Third solution (harmonic). As before it would be sufficient to show that ∠BNC is
bisected by NK. Let L be the antipode of K on the incircle and let G be the second
intersection of AK with the incircle. Moreover let E and F be the contact points of the
incircle on AC, AB.

A

B C

I

KD

E

F

L
G

M

T

N

Note that:

• GFEK is harmonic, since AF and AE are tangent.

• GNKL is harmonic, if ∞ is the infinity point on AD then −1 = (AD;M∞)
K
=

(GK;NL).

Thus lines LN , EF , BC concur at T = GG∩KK, the pole of AGK with respect to the
incircle.

Moreover (TK;BC) = −1, and so since ∠LKN = 90◦ we get the desired bisection.
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5 Solutions for Computational Geometry

We both know we don’t want to be here, so let’s get this
over with.

Xiaoyu He, during a MOP 2013 test review

§5a EGMO 2013/1
The side BC of the triangle ABC is extended beyond C to D so that CD = BC. The
side CA is extended beyond A to E so that AE = 2CA. Prove that if AD = BE then
the triangle ABC is right-angled.

(Available online at https://aops.com/community/p3013167.)

Let ray DA meet BE at M . Consider the triangle EBD. Since the point lies on
median EC, and EA = 2AC, it follows that A is the centroid of 4EBD.

A

B C
D

E

M

So M is the midpoint of BE. Moreover MA = 1
2AD = 1

2BE; so MA = MB = ME
and hence 4ABE is inscribed in a circle with diameter BE. Thus ∠BAE = 90◦, so
∠BAC = 90◦.

§5b USAMO 2010/4
Let ABC be a triangle with ∠A = 90◦. Points D and E lie on sides AC and AB,
respectively, such that ∠ABD = ∠DBC and ∠ACE = ∠ECB. Segments BD and CE
meet at I. Determine whether or not it is possible for segments AB, AC, BI, ID, CI,
IE to all have integer lengths.

(Available online at https://aops.com/community/p1860753.)

The answer is no. We prove that it is not even possible that AB, AC, CI, IB are all
integers.
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B

A C

I

D

E

First, we claim that ∠BIC = 135◦. To see why, note that

∠IBC + ∠ICB =
∠B
2

+
∠C
2

=
90◦

2
= 45◦.

So, ∠BIC = 180◦ − (∠IBC + ∠ICB) = 135◦, as desired.
We now proceed by contradiction. The Pythagorean theorem implies

BC2 = AB2 +AC2

and so BC2 is an integer. However, the law of cosines gives

BC2 = BI2 + CI2 − 2BI · CI cos∠BIC

= BI2 + CI2 +BI · CI ·
√
2.

which is irrational, and this produces the desired contradiction.

§5c IMO 2007/4
In triangle ABC the bisector of ∠BCA meets the circumcircle again at R, the perpen-
dicular bisector of BC at P , and the perpendicular bisector of AC at Q. The midpoint
of BC is K and the midpoint of AC is L. Prove that the triangles RPK and RQL have
the same area.

(Available online at https://aops.com/community/p894655.)

We first begin by proving the following claim.

Claim — We have CQ = PR (equivalently, CP = QR).

Proof. Let O = LQ ∩KP be the circumcenter. Then

]OPQ = ]KPC = 90◦ − ]PCK = 90◦ − ]LCQ = ]]CQL = ]PQO.

Thus OP = OQ. Since OC = OR as well, we get the conclusion.

Denote by X and Y the feet from R to CA and CB, so 4CXR ∼= 4CY R. Then, let
t = CQ

CR = 1− CP
CR .
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C
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X Y

Q
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K
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B

O

Then it follows that

[RQL] = [XQL] = t(1− t) · [XRC] = t(1− t) · [Y CR] = [Y KP ] = [RKP ]

as needed.

Remark. Trigonometric approaches are very possible (and easier to find) as well: both
areas work out to be 1

8ab tan 1
2C.

§5d JMO 2013/5
Quadrilateral XABY is inscribed in the semicircle ω with diameter XY . Segments AY
and BX meet at P . Point Z is the foot of the perpendicular from P to line XY . Point
C lies on ω such that line XC is perpendicular to line AZ. Let Q be the intersection of
segments AY and XC. Prove that

BY

XP
+

CY

XQ
=

AY

AX
.

(Available online at https://aops.com/community/p3043750.)

Let β = ∠Y XP and α = ∠PY X and set XY = 1. We do not direct angles in the
following solution.

X Y

A

B

P

Z

C

Q

β
α
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Observe that
∠AZX = ∠APX = α+ β

since APZX is cyclic. In particular, ∠CXY = 90◦ − (α+ β). It is immediate that

BY = sinβ, CY = cos (α+ β) , AY = cosα, AX = sinα.

The Law of Sines on 4XPY gives XP = XY sinα
sin(α+β) , and on 4XQY gives XQ =

XY sinα
sin(90+β) =

sinα
cosβ . So, the given is equivalent to

sinβ
sinα

sin(α+β)

+
cos(α+ β)

sinα
cosβ

=
cosα
sinα

which is equivalent to cosα = cosβ cos(α+β)+ sinβ sin(α+β). This is obvious, because
the right-hand side is just cos ((α+ β)− β).

§5e CGMO 2007/5
Point D lies inside triangle ABC such that ∠DAC = ∠DCA = 30◦ and ∠DBA = 60◦.
Point E is the midpoint of segment BC. Point F lies on segment AC with AF = 2FC.
Prove that DE ⊥ EF .

(Available online at https://aops.com/community/p1358815.)

Without loss of generality, AC = 3; thus AD = DC =
√
3, and DF = CF = 1. Let O

be the circumcenter of triangle BAD.

D

A C

O

B

F

E

K

We have OD ‖ FC since ∠ODA = 30◦ = ∠DAF , and OD = AD/
√
3 = 1 = CF . So

ODCF is a parallelogram, so diagonals DF and OC bisect each other say at K. Then
DK = KF = 1

2 .
But, EK = 1

2BO = 1
2OD = 1

2 too. Thus from KD = KE = KF we conclude the
desired result.

§5f Shortlist 2011 G1
Let ABC be an acute triangle. Let ω be a circle whose center L lies on the side BC.
Suppose that ω is tangent to AB at B′ and AC at C ′. Suppose also that the circumcenter
O of triangle ABC lies on the shorter arc B′C ′ of ω. Prove that the circumcircle of ABC
and ω meet at two points.
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(Available online at https://aops.com/community/p2739318.)

First, use the fact that

90◦ +
1

2
∠A = ∠B′OC ′ > ∠BOC = 2∠A

to obtain ∠A < 60◦.
Now M be the midpoint of BC. Then

OL ≥ OM = R cosA > R/2

so we are done.

§5g IMO 2001/1
Let ABC be an acute-angled triangle with O as its circumcenter. Let P on line BC
be the foot of the altitude from A. Assume that ∠BCA ≥ ∠ABC + 30◦. Prove that
∠CAB + ∠COP < 90◦.
(Available online at https://aops.com/community/p119192.)

The conclusion rewrites as

∠COP < 90◦ − ∠A = ∠OCP

⇐⇒ PC < PO

⇐⇒ PC2 < PO2

⇐⇒ PC2 < R2 − PB · PC

⇐⇒ PC ·BC < R2

⇐⇒ ab cosC < R2

⇐⇒ sinA sinB cosC <
1

4
.

Now
cosC sinB =

1

2
(sin(C +B)− sin(C −B)) ≤ 1

2

(
1− 1

2

)
=

1

4

which finishes when combined with sinA < 1.

Remark. If we allow ABC to be right then equality holds when ∠A = 90◦, ∠C = 60◦,
∠B = 30◦. This motivates the choice of estimates after reducing to a trig inequality.

§5h IMO 2001/5
Let ABC be a triangle. Let AP bisect ∠BAC and let BQ bisect ∠ABC, with P on BC
and Q on AC. If AB +BP = AQ+QB and ∠BAC = 60◦, what are the angles of the
triangle?
(Available online at https://aops.com/community/p119207.)

The answer is ∠B = 80◦ and ∠C = 40◦. Set x = ∠ABQ = ∠QBC, so that ∠QCB =
120◦ − 2x. We observe ∠AQB = 120◦ − x and ∠APB = 150◦ − 2x.
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A

B CP

Q

30◦
30◦

120 ◦− 2xx
x

Now by the law of sines, we may compute

BP = AB · sin 30◦

sin(150◦ − 2x)

AQ = AB · sinx

sin(120◦ − x)

QB = AB · sin 60◦

sin(120◦ − x)
.

So, the relation AB +BP = AQ+QB is exactly

1 +
sin 30◦

sin(150◦ − 2x)
=

sinx+ sin 60◦

sin(120◦ − x)
.

This is now a trig problem, and we simply solve for x. There are many possible approaches
and we just present one.

First of all, we can write

sinx+ sin 60◦ = 2 sin
(
1

2
(x+ 60◦)

)
cos
(
1

2
(x− 60◦)

)
.

On the other hand, sin(120◦ − x) = sin(x+ 60◦) and

sin(x+ 60◦) = 2 sin
(
1

2
(x+ 60◦)

)
cos
(
1

2
(x+ 60◦)

)
so

sinx+ sin 60◦

sin(120◦ − x)
=

cos
(
1
2x− 30◦

)
cos
(
1
2x+ 30◦

) .
Let y = 1

2x for brevity now. Then

cos(y − 30◦)

cos(y + 30◦)
− 1 =

cos(y − 30◦)− cos(y + 30◦)

cos(y + 30◦)

=
2 sin(30◦) sin y

cos(y + 30◦)

=
sin y

cos(y + 30◦)
.

Hence the problem is just

sin 30◦

sin(150◦ − 4y)
=

sin y

cos(y + 30◦)
.

41



Evan Chen《陳誼廷》 — 31 January 2024 Auto-Generated EGMO Solutions Treasury

Equivalently,

cos(y + 30◦) = 2 sin y sin(150◦ − 4y)

= cos(5y − 150◦)− cos(150◦ − 3y)

= − cos(5y + 30◦) + cos(3y + 30◦).

Now we are home free, because 3y + 30◦ is the average of y + 30◦ and 5y + 30◦. That
means we can write

cos(y + 30◦) + cos(5y + 30◦)

2
= cos(3y + 30◦) cos(2y).

Hence
cos(3y + 30◦) (2 cos(2y)− 1) = 0.

Recall that
y =

1

2
x =

1

4
∠B <

1

4
(180◦ − ∠A) = 30◦.

Hence it is not possible that cos(2y) = 1
2 , since the smallest positive value of y that

satisfies this is y = 30◦. So cos(3y + 30◦) = 0.
The only permissible value of y is then y = 20◦, giving ∠B = 80◦ and ∠C = 40◦.

§5i IMO 2001/6
Let a > b > c > d > 0 be integers satisfying

ac+ bd = (b+ d+ a− c)(b+ d− a+ c).

Prove that ab+ cd is not prime.

(Available online at https://aops.com/community/p119217.)

The problem condition is equivalent to

ac+ bd = (b+ d)2 − (a− c)2

or
a2 − ac+ c2 = b2 + bd+ d2.

Let us construct a quadrilateral WXY Z such that WX = a, XY = c, Y Z = b,
ZW = d, and

WY =
√

a2 − ac+ c2 =
√

b2 + bd+ d2.

Then by the law of cosines, we obtain ∠WXY = 60◦ and ∠WZY = 120◦. Hence this
quadrilateral is cyclic.
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X

W Y

Z

a

b

c

d

√
a2 − ac+ c2

=
√
b2 + bd+ d2

By the more precise version of Ptolemy’s theorem, we find that

WY 2 =
(ab+ cd)(ad+ bc)

ac+ bd
.

Now assume for contradiction that that ab+ cd is a prime p. Recall that we assumed
a > b > c > d. It follows, for example by rearrangement inequality, that

p = ab+ cd > ac+ bd > ad+ bc.

Let y = ac+ bd and x = ad+ bc now. The point is that

p · x
y

can never be an integer if p is prime and x < y < p. But WY 2 = a2 − ac+ c2 is clearly
an integer, and this is a contradiction.

Hence ab+ cd cannot be prime.

Remark. It may be tempting to try to apply the more typical form of Ptolemy to get
ab + cd = WY · XZ; the issue with this approach is that WY and XZ are usually not
integers.
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6 Solutions for Complex Numbers

The real fun of living wisely is that you get to be smug
about it.

Hobbes, in Calvin and Hobbes

§6a USAMO 2015/2
Quadrilateral APBQ is inscribed in circle ω with ∠P = ∠Q = 90◦ and AP = AQ < BP .
Let X be a variable point on segment PQ. Line AX meets ω again at S (other than A).
Point T lies on arc AQB of ω such that XT is perpendicular to AX. Let M denote the
midpoint of chord ST .

As X varies on segment PQ, show that M moves along a circle.

(Available online at https://aops.com/community/p4769957.)

We present three solutions, one by complex numbers, two more synthetic. (A fourth
solution using median formulas is also possible.) Most solutions will prove that the center
of the fixed circle is the midpoint of AO (with O the center of ω); this can be recovered
empirically by letting

• X approach P (giving the midpoint of BP )

• X approach Q (giving the point Q), and

• X at the midpoint of PQ (giving the midpoint of BQ)

which determines the circle; this circle then passes through P by symmetry and we can
find the center by taking the intersection of two perpendicular bisectors (which two?).

¶ Complex solution (Evan Chen). Toss on the complex unit circle with a = −1, b = 1,
z = −1

2 . Let s and t be on the unit circle. We claim Z is the center.
It follows from standard formulas that

x =
1

2
(s+ t− 1 + s/t)

thus
4Rex+ 2 = s+ t+

1

s
+

1

t
+

s

t
+

t

s

which depends only on P and Q, and not on X. Thus

4

∣∣∣∣z − s+ t

2

∣∣∣∣2 = |s+ t+ 1|2 = 3 + (4Rex+ 2)

does not depend on X, done.
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¶ Homothety solution (Alex Whatley). Let G, N , O denote the centroid, nine-point
center, and circumcenter of triangle AST , respectively. Let Y denote the midpoint of
AS. Then the three points X, Y , M lie on the nine-point circle of triangle AST , which
is centered at N and has radius 1

2AO.

A

B

S

T

O

XP Q

M

G
N

Y

Let R denote the radius of ω. Note that the nine-point circle of 4AST has radius
equal to 1

2R, and hence is independent of S and T . Then the power of A with respect to
the nine-point circle equals

AN2 −
(
1

2
R

)2

= AX ·AY =
1

2
AX ·AS =

1

2
AQ2

and hence

AN2 =

(
1

2
R

)2

+
1

2
AQ2

which does not depend on the choice of X. So N moves along a circle centered at A.
Since the points O, G, N are collinear on the Euler line of 4AST with

GO =
2

3
NO

it follows by homothety that G moves along a circle as well, whose center is situated
one-third of the way from A to O. Finally, since A, G, M are collinear with

AM =
3

2
AG

it follows that M moves along a circle centered at the midpoint of AO.

¶ Power of a point solution (Zuming Feng, official solution). We complete the picture
by letting 4KYX be the orthic triangle of 4AST ; in that case line XY meets the ω
again at P and Q.
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A

B

S T

O

X

M

Y

K

P

Q

V

The main claim is:

Claim — Quadrilateral PQKM is cyclic.

Proof. To see this, we use power of a point: let V = QXY P ∩ SKMT . One approach is
that since (V K;ST ) = −1 we have V Q ·V P = V S ·V T = V K ·VM . A longer approach
is more elementary:

V Q · V P = V S · V T = V X · V Y = V K · VM

using the nine-point circle, and the circle with diameter ST .

But the circumcenter of PQKM , is the midpoint of AO, since it lies on the perpendicular
bisectors of KM and PQ. So it is fixed, the end.

§6b China TST 2006/4/1
Let H be the orthocenter of triangle ABC. Let D, E, F lie on the circumcircle of ABC
such that AD ‖ BE ‖ CF . Let S, T , U respectively denote the reflections of D, E, F
across BC, CA, AB. Prove that points S, T , U , H are concyclic.
(Available online at https://aops.com/community/p550632.)

Let (ABC) be the unit circle and h = a+b+c. WLOG, AD, BE, CF are perpendicular
to the real axis (rotate appropriately); thus d = a and so on.

Thus s = b+ c− bcd = b+ c− abc and so on; we now have
s− t

s− u
=

b− a

c− a
and h− t

h− u
=

b+ abc

c+ abc
.

Compute
s− t

s− u
:
h− t

h− u
=

(b− a)(c+ abc)

(c− a)(b+ abc)
=

(
1
b −

1
a

) (
1
c +

1
abc

)(
1
c −

1
a

) (
1
b +

1
abc

)
and thus

s− t

s− u
:
h− t

h− u
∈ R

as desired.
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Remark. In fact, the problem remains true if the all-parallel condition is replaced by AD,
BE, CF merely being concurrent at some point. The calculation in this case is more
involved though.

§6c USA TST 2014/5
Let ABCD be a cyclic quadrilateral, and let E, F , G, and H be the midpoints of AB,
BC, CD, and DA respectively. Let W , X, Y and Z be the orthocenters of triangles
AHE, BEF , CFG and DGH, respectively. Prove that the quadrilaterals ABCD and
WXY Z have the same area.

(Available online at https://aops.com/community/p3476291.)

The following solution is due to Grace Wang.
We begin with:

Claim — Point W has coordinates 1
2(2a+ b+ d).

Proof. The orthocenter of 4DAB is d + a + b, and 4AHE is homothetic to 4DAB
through A with ratio 1/2. Hence w = 1

2(a+ (d+ a+ b)) as needed.

By symmetry, we have

w =
1

2
(2a+ b+ d)

x =
1

2
(2b+ c+ a)

y =
1

2
(2c+ d+ b)

z =
1

2
(2d+ a+ c).

We see that w − y = a − c, x − z = b − d. So the diagonals of WXY Z have the same
length as those of ABCD as well as the same directed angle between them. This implies
the areas are equal, too.

§6d OMO 2013 F26
Let ABC be an acute triangle with circumcenter O. Denote the reflections of B and C
across AC, AB by D, E, respectively. Let P be a point such that 4DPO ∼ 4PEO
with the same orientation, and let X and Y be the midpoints of the major and minor
arcs B̂C of the circumcircle of triangle ABC. Calculate PX · PY in terms of the side
lengths of ABC.

(Available online at https://aops.com/community/p3261431.)

We will prove that
PX · PY = BC2.
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We apply complex numbers with (ABC) the unit circle. Observe that x+ y = 0 and
xy + bc = 0. Moreover, the condition 4DPO ∼ 4PEO is just

d− p

p− 0
=

p− e

e− 0
⇐⇒ p2 − pe = de− pe ⇐⇒ p2 = de.

Now we can compute

(PX · PY )2 = |p− x|2 |p− y|2

= (p− x) (p− x) (p− y) (p− y)

=
(
p2 − (x+ y)p+ xy

) (
p2 − (x+ y) p+ xy

)
= (p2 + xy)

(
p2 + xy

)
= (de− bc)

(
de− bc

)
= |de− bc|2 .

Thus PX · PY = |de− bc|. Now

d = a+ c− ac

b
, e = a+ b− ab

c
.

Therefore,

de =
(
a+ c− ac

b

)(
a+ b− ab

c

)
= a2 + ab+ ac+ bc− a2c

b
− ac− a2b

c
− ab+ a2

= 2a2 − a2c

b
− a2b

c
+ bc.

Hence

PX · PY = |de− bc|

=

∣∣∣∣2a2 − a2c

b
− a2b

c

∣∣∣∣
=

∣∣∣∣−a2

bc
(b− c)2

∣∣∣∣
=

∣∣∣∣−a2

bc

∣∣∣∣ |b− c|2

= BC2.

§6e IMO 2009/2
Let ABC be a triangle with circumcenter O. The points P and Q are interior points
of the sides CA and AB respectively. Let K, L, M be the midpoints of BP , CQ, PQ,
respectively, and let Γ be the circumcircle of 4KLM . Suppose that PQ is tangent to Γ.
Prove that OP = OQ.

(Available online at https://aops.com/community/p1561572.)

By power of a point, we have −AQ · QB = OQ2 − R2 and −AP · PC = OP 2 − R2.
Therefore, it suffices to show AQ ·QB = AP · PC.
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A

B C

P

Q

M

K

L

As ML ‖ AC and MK ‖ AB we have that

]APQ = ]LMP = ]LKM

]PQA = ]KMQ = ]MLK

and consequently we have the (opposite orientation) similarity

4APQ
−∼ 4MKL.

Therefore
AQ

AP
=

ML

MK
=

2ML

2MK
=

PC

QB

id est AQ ·QB = AP · PC, which is what we wanted to prove.

§6f APMO 2010/4
Let ABC be an acute triangle with AB > BC and AC > BC. Denote by O and H
the circumcenter and orthocenter of ABC. Suppose that the circumcircle of triangle
AHC intersects the line AB at M (other than A), and the circumcircle of triangle AHB
intersects the line AC at N (other than A). Prove that the circumcenter of triangle
MNH lies on line OH.

(Available online at https://aops.com/community/p1868946.)

Inversion solution: Perform a negative inversion at H mapping the circumcircle to
the nine-point circle. Then look at 4DEF .

The problem reduces to the DE ⊥ IO lemma (in the style of EGMO 2014/2).
Complex numbers solution: Let BE and CF be altitudes of 4ABC.
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A

B C

O

H

E

F

M

N

X

First, we claim that M is the reflection of B over F . Indeed, we have that

]BMH = ]AMH = ]ACH = ]ECF = ]EBF = ]HBM

implying that 4MHB is isosceles. As HF ⊥MB, the conclusion follows. Similarly, we
can see that N is the reflection of C over E.

Now we can apply complex numbers with (ABC) as the unit circle. Hence we have
f = 1

2(a+ b+ c− abc), and hence

m = 2f − b = a+ c− abc.

Similarly,
n = a+ b− acb.

Now we wish to compute the circumcenter X of 4HMN , where h = a+ b+ c. Let M ′

be the point corresponding to m − h = −b − abc and N ′ be the point corresponding
to n − h = −c − acb, noting that O corresponds to h − h = 0. Then the circumcenter
of 4M ′N ′O corresponds to the point x− h. But we can compute the circumcenter of
4M ′N ′O; it is

x− h =
(m− h)(n− h)

(
(m− h)− (n− h)

)
(m− h)(n− h)− (m− h)(n− h)

=

(
−b− ab

c

) (
−c− ac

b

) ((
−1

b −
c
ab

)
−
(
−1

c −
b
ac

))(
−1

b −
c
ab

) (
−c− ac

b

)
−
(
−b− ab

c

) (
−1

c −
b
ac

)
=

(
b+ ab

c

) (
c+ ac

b

) ((
1
b +

c
ab

)
−
(
1
c +

b
ac

))(
1
b +

c
ab

) (
c+ ac

b

)
−
(
b+ ab

c

) (
1
c +

b
ac

) .

Multiplying the numerator and denominator by ab2c2,

x− h =
bc (a+ b) (a+ c) (c(a+ c)− b(a+ b))

c3(a+ b)(a+ c)− b3(a+ b)(a+ c)

=
bc
(
c2 − b2 + a(c− b)

)
c3 − b3

=
bc(c− b)(a+ b+ c)

(c− b)(b2 + bc+ c2)

=
bc(a+ b+ c)

b2 + bc+ c2
.
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So
x = h+

bc(a+ b+ c)

b2 + bc+ c2
= h

[
1 +

bc

b2 + bc+ c2

]
.

Finally, to show X, H, O are collinear, we only need to prove x
h = bc

b2+bc+c2
+1 is real. It

is equivalent to show bc
b2+bc+c2

is real, but its conjugate is(
bc

b2 + bc+ c2

)
=

1
bc

1
b2

+ 1
bc +

1
c2

=
bc

b2 + bc+ c2

and the proof is complete.

§6g Shortlist 2006 G9
Points A1, B1, C1 are chosen on the sides BC, CA, AB of a triangle ABC respectively.
The circumcircles of triangles AB1C1, BC1A1, CA1B1 intersect the circumcircle of
triangle ABC again at points A2, B2, C2 respectively (A2 6= A,B2 6= B,C2 6= C). Points
A3, B3, C3 are symmetric to A1, B1, C1 with respect to the midpoints of the sides BC,
CA, AB respectively. Prove that the triangles A2B2C2 and A3B3C3 are similar.

(Available online at https://aops.com/community/p875036.)

We will prove the following claim, after which only angle chasing remains.

Claim — We have ]AC3B3 = ]A2BC.

Proof. By spiral similarity at A2, we deduce that 4A2C1B ∼ 4A2B1C, hence

A2B

A2C
=

C1B

B1C
=

AC3

AB3
.

A

B CA1

B1

C1

A3

B3

C3

A2

B2

C2

It follows that
4A2BC ∼ 4AC3B3
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since we also have ]BA2C = ]BAC = ]C3AB3. (Configuration issues: we can check
that A2 lies on the same side of A as BC since B1 and C1 are constrained to lie on the
sides of the triangle. So we can deduce ∠C3AB3 = ∠BA2C.)

Thus ]AC3B3 = ]A2BC, completing the proof.

Similarly, ]BC3A3 = ]B2AC
The rest is angle chasing; we have

]A3C3B3 = ]A3C3A+ ]AC3B3

= ]A3C3B + ]AC3B3

= ]CAB2 + ]A2BC

= ]A2C2C + ]CC2B2

= ]A2C2B2.

§6h MOP 2006/4/1
Given a cyclic quadrilateral ABCD with circumcenter O and a point P on the plane,
let O1, O2, O3, O4 denote the circumcenters of triangles PAB, PBC, PCD, PDA
respectively. Prove that the midpoints of segments O1O3, O2O4, and OP are collinear.

We apply complex numbers with (ABCD) as the unit circle. The problem is equivalent
to proving that

1
2p−

1
2(o1 + o3)

1
2p−

1
2(o1 + o3)

=
1
2p−

1
2(o2 + o4)

1
2p−

1
2(o2 + o4)

.

First, we compute

o1 =

∣∣∣∣∣∣
a aa 1

b bb 1
p pp 1

∣∣∣∣∣∣÷
∣∣∣∣∣∣
a a 1

b b 1
p p 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
a 1 1
b 1 1
p pp 1

∣∣∣∣∣∣÷
∣∣∣∣∣∣
a 1

a 1
b 1

b 1
p p 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
a 0 1
b 0 1
p pp− 1 1

∣∣∣∣∣∣÷
∣∣∣∣∣∣
a 1

a 1
b 1

b 1
p p 1

∣∣∣∣∣∣
=

(pp− 1) (b− a)
a
b −

b
a + p( 1a −

1
b ) + p(b− a)

=
pp− 1

p
ab + p− a+b

ab

.

The conjugate of this expression is easier to work with; we have

o1 =
pp− 1

abp+ p− (a+ b)
.

Similarly,
o3 =

pp− 1

cdp+ p− (c+ d)
.
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In what follows, we let s1 = a + b + c + d, s2 = ab + bc + cd + da + ac + bd, s3 =
abc+ bcd+ cda+ dab, and s4 = abcd for brevity. Then,

o1 + o3 − p

= (pp− 1)

(
1

abp+ p− (a+ b)
+

1

cdp+ p− (c+ d)

)
− p

=
(pp− 1) (2p+ (ab+ cd)p− s1)

(abp+ p− (a+ b)) (cdp+ p− (c+ d))
− p.

Consider the fraction in the above expansion. One can check that the denominator
expands as

D = s4p
2 + (ab+ cd) pp+ p2 − s3p− s1p+ (ac+ ad+ bc+ bd).

On the other hand, the numerator is equal to

N = (2p− s1)(pp− 1) + (ab+ cd)p(pp− 1).

Thus,
o1 + o3 − p =

N − pD
D

.

We claim that the expression N − pD is symmetric in a, b, c, d. To see this, we need
only look at the terms of N and D that are not symmetric in a, b, c, d. These are
(ab+ cd)p(pp− 1) and (ab+ cd)pp+(ac+ ad+ bd+ bc), respectively. Subtracting p times
the latter from the former yields −s2p. Hence N − pD is symmetric in a, b, c, d, as
claimed.1 Now we may set S = N − pD.

Thus

o1 + o3 − p

o1 + o3 − p
=
S/D
S/D

=
S
S
· D
D

=
S
S
· (abp+ p− (a+ b))(cdp+ p− (c+ d))

( 1
abp+ p− 1

a −
1
b )(

1
cdp+ p− 1

c −
1
d)

=
S
S
· abcd.

Hence, we deduce
o1 + o3 − p

o1 + o3 − p

is in fact symmetric in a, b, c, d. Hence if we repeat the same calculation with o2+o4−p
o2+o4−p ,

we must obtain exactly the same result. This completes the solution.

§6i Shortlist 1998 G6
Let ABCDEF be a convex hexagon such that ∠B + ∠D + ∠F = 360◦ and

AB

BC
· CD

DE
· EF

FA
= 1.

1In fact, if you really want to do the computation you can check that N − pD = −s4p
3 + p2p+ s3p

2 −
s2p+ p+ 2p+ s− 1. But we will not need to do anything with this expression other than notice that it
is symmetric.
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Prove that
BC

CA
· AE

EF
· FD

DB
= 1.

(Available online at https://aops.com/community/p3488.)

We use complex numbers, since the condition in its given form is an abomination.
Consider the quantity

b− a

f − a
· d− c

b− c
· f − e

d− e
.

By the first condition, its argument is 360◦, so it is a positive real However, the second
condition implies that it has norm 1. We deduce that it is actually equal to 1.

So, we are given that

0 = (a− b)(c− d)(e− f) + (b− c)(d− e)(f − a)

and wish to show that

|(b− c)(a− e)(f − d)| = |(c− a)(e− f)(d− b)|.

But in fact one can check they are equal.

§6j ELMO SL 2013 G7
Let ABC be a triangle inscribed in circle ω, and let the medians from B and C intersect
ω at D and E respectively. Let O1 be the center of the circle through D tangent to AC
at C, and let O2 be the center of the circle through E tangent to AB at B. Prove that
O1, O2, and the nine-point center of ABC are collinear.
(Available online at https://aops.com/community/p3151965.)

We use complex numbers with (ABC) the unit circle.
To compute D, note that since the midpoint of AC lies on chord BD, we should have

b+ d =
a+ c

2
+ bd · a+ c

2ac
=⇒ d =

a+c
2 − b

1− b(a+c)
2ac

=
ac(a+ c− 2b)

2ac− b(a+ c)
.

We now seek to compute O1. Let O denote the circumcircle. Note that since 4AOD ∼
4DCO1 we have

o1 − d

c− d
=
−d
a− d

so

o1 =
d(a− d)− d(c− d)

a− d
=

d(a− c)

a− d

=
ac(a+ c− 2b)(a− c)

a(2ac− b(a+ c))− ac(a+ c− 2b)

=
c(a+ c− 2b)(a− c)

ac− ab+ bc− c2
=

c(a+ c− 2b)

c− b
.

Similarly o2 =
b(a+b−2c)

b−c . We now find that

o1 + o2
2

=
b(a+ b− 2c)− c(a+ c− 2b)

2(b− c)
=

a+ b+ c

2

so in fact the nine-point center is the midpoint of O1 and O2.
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7 Solutions for Barycentric Coordinates

I don’t care if you’re a devil in disguise! I love you all the
same!

Misa Amane, in Death Note: The Last Name

§7a IMO 2014/4
Let P and Q be on segment BC of an acute triangle ABC such that ∠PAB = ∠BCA
and ∠CAQ = ∠ABC. Let M and N be points on AP and AQ, respectively, such that
P is the midpoint of AM and Q is the midpoint of AN . Prove that BM and CN meet
on the circumcircle of 4ABC.

(Available online at https://aops.com/community/p3543136.)

We give three solutions.

¶ First solution by harmonic bundles. Let BM intersect the circumcircle again at X.

A

B CPQ

MN

X

The angle conditions imply that the tangent to (ABC) at B is parallel to AP . Let ∞
be the point at infinity along line AP . Then

−1 = (AM ;P∞)
B
= (AX;BC).

Similarly, if CN meets the circumcircle at Y then (AY ;BC) = −1 as well. Hence X = Y ,
which implies the problem.
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¶ Second solution by similar triangles. Once one observes 4CAQ ∼ 4CBA, one can
construct D the reflection of B across A, so that 4CAN ∼ 4CBD. Similarly, letting E
be the reflection of C across A, we get 4BAP ∼ 4BCA =⇒ 4BAM ∼ 4BCE. Now
to show ∠ABM + ∠ACN = 180◦ it suffices to show ∠EBC + ∠BCD = 180◦, which
follows since BCDE is a parallelogram.

¶ Third solution by barycentric coordinates. Since PB = c2/a we have

P = (0 : a2 − c2 : c2)

so the reflection ~M = 2~P − ~A has coordinates

M = (−a2 : 2(a2 − c2) : 2c2).

Similarly N = (−a2 : 2b2 : 2(b2 − a2)). Thus

BM ∩ CN = (−a2 : 2b2 : 2c2)

which clearly lies on the circumcircle, and is in fact the point identified in the first
solution.

§7b EGMO 2013/1
The side BC of the triangle ABC is extended beyond C to D so that CD = BC. The
side CA is extended beyond A to E so that AE = 2CA. Prove that if AD = BE then
the triangle ABC is right-angled.

(Available online at https://aops.com/community/p3013167.)

Let ray DA meet BE at M . Consider the triangle EBD. Since the point lies on
median EC, and EA = 2AC, it follows that A is the centroid of 4EBD.

A

B C
D

E

M

So M is the midpoint of BE. Moreover MA = 1
2AD = 1

2BE; so MA = MB = ME
and hence 4ABE is inscribed in a circle with diameter BE. Thus ∠BAE = 90◦, so
∠BAC = 90◦.
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§7c ELMO SL 2013 G3
In non-right triangle ABC, a point D lies on line BC. The circumcircle of ABD meets
AC at F (other than A), and the circumcircle of ADC meets AB at E (other than A).
Prove that as D varies, the circumcircle of AEF always passes through a fixed point
other than A, and that this point lies on the median from A to BC.

(Available online at https://aops.com/community/p3151962.)

After a
√
bc inversion around A, it suffices to prove that for variable D∗ on (ABC),

the line through E∗ = BD∗ ∩AC and F ∗ = CD∗ ∩AB passes through a fixed point on
the A-symmedian. By Brokard’s theorem this is the pole of BC.

Alternatively, use barycentric coordinates with A = (1, 0, 0), etc. Let D = (0 : m : n)
with m + n = 1. Then the circle ABD has equation −a2yz − b2zx − c2xy + (x + y +
z)
(
a2m · z

)
. To intersect it with side AC, put y = 0 to get (x+ z)(a2mz) = b2zx =⇒

b2

a2m
· x = x+ z =⇒

(
b2

a2m
− 1
)
x = z, so

F = (a2m : 0 : b2 − a2m)

Similarly,
G = (a2n : c2 − a2n : 0).

Then, the circle (AFG) has equation

−a2yz − b2zx− c2xy + a2(x+ y + z)(my + nz) = 0.

Upon picking y = z = 1, we easily see there exists a t such that (t : 1 : 1) is on the circle,
implying the conclusion.

One can also use trigonometry directly. Let M be the midpoint of BC. By power of
a point, c · BE + b · CF = a · BD + a · CD = a2 is constant. Fix a point D0; and let
P0 = AM ∩ (AE0F0). For any other point D, we have E0E

F0F
= b

c = sin∠BAM
sin∠CAM = P0E0

P0F0
from

the extended law of sines, so triangles P0E0E and P0F0F are directly similar, whence
AEP0F is cyclic, as desired.

§7d IMO 2012/1
Given triangle ABC the point J is the centre of the excircle opposite the vertex A. This
excircle is tangent to the side BC at M , and to the lines AB and AC at K and L,
respectively. The lines LM and BJ meet at F , and the lines KM and CJ meet at G.
Let S be the point of intersection of the lines AF and BC, and let T be the point of
intersection of the lines AG and BC. Prove that M is the midpoint of ST .

(Available online at https://aops.com/community/p2736397.)

We employ barycentric coordinates with reference 4ABC. As usual a = BC, b = CA,
c = AB, s = 1

2(a+ b+ c).
It’s obvious that K = (−(s− c) : s : 0), M = (0 : s− b : s− c). Also, J = (−a : b : c).

We then obtain
G =

(
−a : b :

−as+ (s− c)b

s− b

)
.
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It follows that

T =

(
0 : b :

−as+ (s− c)

s− b

)
= (0 : b(s− b) : b(s− c)− as).

Normalizing, we see that T =
(
0,− b

a , 1 +
b
a

)
, from which we quickly obtain MT = s.

Similarly, MS = s, so we’re done.

§7e USA TST 2008/7
Let ABC be a triangle with G as its centroid. Let P be a variable point on segment
BC. Points Q and R lie on sides AC and AB respectively, such that PQ ‖ AB and
PR ‖ AC. Prove that, as P varies along segment BC, the circumcircle of triangle AQR
passes through a fixed point X such that ∠BAG = ∠CAX.

(Available online at https://aops.com/community/p1247506.)

Let P = (0, s, t) where s + t = 1. One can check that Q = (s, 0, t). Similarly,
R = (t, s, 0). So the circumcircle of 4AQR is given by

−a2yz − b2zx− c2xy + (x+ y + z)(ux+ vy + wz) = 0

where u, v, w are some real numbers.

A

B C

G

P

Q

R

X

Plugging in the point A gives u = 0. Plugging in the point Q gives wt = b2st, so
w = b2s. Plugging in the point R gives vs = c2st, so v = c2t. Thus the circumcircle has
equation

−a2yz − b2zx− c2xy + (x+ y + z)
(
c2ty + b2sz

)
= 0.

Now let us consider the intersection of the A-symmedian with this circumcircle. Let
the intersection be X = (k : b2 : c2). We aim to show the value of k does not depend on
s or t. But this is obvious, as substitution gives

−a2b2c2 − 2b2c2k + (k + b2 + c2)(b2c2)(s+ t) = 0.

Since s+ t = 1 and the equation is linear in k, we have exactly one solution for k. The
proof ends here; there is no need to compute the value of k explicitly. (For the curious,
the actual value of k is k = −a2 + b2 + c2.)
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§7f USAMO 2001/2
Let ABC be a triangle and let ω be its incircle. Denote by D1 and E1 the points where
ω is tangent to sides BC and AC, respectively. Denote by D2 and E2 the points on sides
BC and AC, respectively, such that CD2 = BD1 and CE2 = AE1, and denote by P the
point of intersection of segments AD2 and BE2. Circle ω intersects segment AD2 at two
points, the closer of which to the vertex A is denoted by Q. Prove that AQ = D2P .

(Available online at https://aops.com/community/p337870.)

We have that P is the Nagel point

P = (s− a : s− b : s− c) .

Therefore,
PD2

AD2
=

s− a

(s− a) + (s− b) + (s− c)
=

s− a

s
.

Meanwhile, Q is the antipode of D1. The classical homothety at A mapping Q to D1 (by
mapping the incircle to the A-excircle) has ratio s−a

s as well (by considering the length
of the tangents from A), so we are done.

§7g TSTST 2012/7
Triangle ABC is inscribed in circle Ω. The interior angle bisector of angle A intersects
side BC and Ω at D and L (other than A), respectively. Let M be the midpoint of side
BC. The circumcircle of triangle ADM intersects sides AB and AC again at Q and
P (other than A), respectively. Let N be the midpoint of segment PQ, and let H be
the foot of the perpendicular from L to line ND. Prove that line ML is tangent to the
circumcircle of triangle HMN .

(Available online at https://aops.com/community/p2745857.)

By angle chasing, equivalent to show MN ‖ AD, so discard the point H. We now
present a three solutions.

¶ First solution using vectors. We first contend that:

Claim — We have QB = PC.

Proof. Power of a Point gives BM · BD = AB · QB. Then use the angle bisector
theorem.

Now notice that the vector
−−→
MN =

1

2

(−−→
BQ+

−−→
CP
)

which must be parallel to the angle bisector since
−−→
BQ and

−−→
CP have the same magnitude.
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¶ Second solution using spiral similarity. let X be the arc midpoint of BAC. Then
ADMX is cyclic with diameter AM , and hence X is the Miquel point X of QBPC is the
midpoint of arc BAC. Moreover XND collinear (as XP = XQ, DP = DQ) on (APQ).

A

B C

L

D M

Q

P

N

H

X

Then 4XNM ∼ 4XPC spirally, and

]XMN = ]XCP = ]XCA = ]XLA

thus done.

¶ Third solution using barycentrics (mine). Once reduced to MN ‖ AB, straight bary
will also work. By power of a point one obtains

P =
(
a2 : 0 : 2b(b+ c)− a2

)
Q =

(
a2 : 2c(b+ c)− a2 : 0

)
=⇒ N =

(
a2(b+ c) : 2bc(b+ c)− ba2 : 2bc(b+ c)− ca2

)
.

Now the point at infinity along AD is (−(b+ c) : b : c) and so we need only verify

det

a2(b+ c) 2bc(b+ c)− ba2 2bc(b+ c)− ca2

0 1 1
−(b+ c) b c

 = 0

which follows since the first row is −a2 times the third row plus 2bc(b + c) times the
second row.

§7h December TST 2012/1
In acute triangle ABC, ∠A < ∠B and ∠A < ∠C. Let P be a variable point on side
BC. Points D and E lie on sides AB and AC, respectively, such that BP = PD and
CP = PE. Prove that as P moves along side BC, the circumcircle of triangle ADE
passes through a fixed point other than A.

(Available online at https://aops.com/community/p3195787.)
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Use reference ABC. Let P = (0, s, t) with s+ t = 1.
Then we have that:

BD = 2BP cosB = 2(at) cosB = t · 2c ∈ SB

Subtracting, AD = c−BD = c− t · 2c−1SB, so

D =
(
t · 2c−1SA : c− t · 2c−1SB : 0

)
=
(
t · 2SA : c2 − t · 2SB : 0

)
.

Analogously,
E =

(
s · 2SC : 0 : b2 − s · 2SC

)
.

Claim — The circumcircle of 4ADE has equation

−a2yz − b2zx− c2xy + 2(x+ y + z)(tSBy + sSCz) = 0.

Proof. Circle formula applied to A gives u = 0. Plugging in D and E:

c2(t · 2SB)(c
2 − t · 2SB) = c2(v · (c2 − t · 2SB))

=⇒ v = 2t · SB

=⇒ w = 2s · SC .

From here one can check that the fixed point turns out to be H = ( 1
SA

: 1
SB

: 1
SC

).

Remark. One does not even need to compute the point H. Instead, by inspection one
observes there is a unique real number λ for which (λ : 1

SB
: 1
SC

) lies on the circle, since one
obtains a linear equation in λ whose linear coefficient is −b2

SB
+ −c2

SC
+ 2 6= 0, and that yields

a fixed point.

§7i Sharygin 2013/20
Let C1 be an arbitrary point on side AB of 4ABC. Points A1 and B1 are on rays BC
and AC such that ∠AC1B1 = ∠BC1A1 = ∠ACB. The lines AA1 and BB1 meet in
point C2. Prove that all the lines C1C2 have a common point.

Here are two approaches.

¶ First DDIT solution. Use dual Desargues’ involution theorem from C1 to complete
quadrilateral ABA1B1CC2; the involution corresponds to reflection over AB so we find
that C1C2 passes through the reflection of C over AB.

¶ Second barycentric solution. We use barycentric coordinates. Let A = (1, 0, 0),
B = (0, 1, 0), and C = (0, 0, 1). Denote a = BC, b = CA, and c = AB. We claim that
the common point is

K =
(
a2 − b2 + c2 : b2 − a2 + c2 : −c2

)
.

Let C1 = (u, v, 0) with u+ v = 1.
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A B

C

C1

A1B1 C2

By power of a point, we observe that BA1 =
uc2

a . Therefore, we obtain that

A1 =

(
0 : a− uc2

a
:
uc2

a

)
=
(
0 : a2 − uc2 : uc2

)
.

Similarly,
B1 =

(
b2 − vc2 : 0 : vc2

)
.

Therefore,
C2 =

(
u(b2 − vc2) : v(a2 − uc2) : uvc2

)
.

Now we show that C1, C2, and K are collinear. Expand∣∣∣∣∣∣
u(b2 − vc2) v(a2 − uc2) uvc2

u v 0
a2 − b2 + c2 b2 − a2 + c2 −c2

∣∣∣∣∣∣ = uvc2

∣∣∣∣∣∣
b2 − vc2 a2 − uc2 uv

1 1 0
a2−b2+c2

u
b2−a2+c2

v −1

∣∣∣∣∣∣
= uvc2

[
(a2 − uc2)− (b2 − vc2)

+ u(b2 − a2 + c2)− v(a2 − b2 + c2)
]

= uvc2(b2 − a2)(u+ v − 1) = 0

which implies that C1, C2, and K are collinear, as desired.

§7j APMO 2013/5
Let ABCD be a quadrilateral inscribed in a circle ω, and let P be a point on the extension
of AC such that PB and PD are tangent to ω. The tangent at C intersects PD at Q
and the line AD at R. Let E be the second point of intersection between AQ and ω.
Prove that B, E, R are collinear.

(Available online at https://aops.com/community/p3046946.)

¶ First solution. Let E′ be the second intersection of BR with ω. Then

−1 = (AC;BD)
R
= (DC;AE′).

But DACE is harmonic, so E = E′.
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¶ Second solution. Define E′ as before. Set T = AA ∩ CR, Z = AB ∩ CR. Then

−1 = (AC;BD)
A
= (TC;ZR)

B
= (DC;AE′).

So again E = E′.

A

B
D

P

C
Q

R

E

T

Z

¶ Third solution using Pascal. After defining T as before, use Pascal on AAEBDD.

¶ Third solution with homography. Note that ABCD is harmonic. Thus we can take
a homography which preserves ω and sends ABCD to a square (i.e. harmonic rectangle),
and then coordinate bash.

§7k USAMO 2005/3
Let ABC be an acute-angled triangle, and let P and Q be two points on side BC.
Construct a point C1 in such a way that the convex quadrilateral APBC1 is cyclic,
QC1 ‖ CA, and C1 and Q lie on opposite sides of line AB. Construct a point B1 in such
a way that the convex quadrilateral APCB1 is cyclic, QB1 ‖ BA, and B1 and Q lie on
opposite sides of line AC. Prove that the points B1, C1, P , and Q lie on a circle.

(Available online at https://aops.com/community/p213011.)

It is enough to prove that A, B1, and C1 are collinear, since then ]C1QP = ]ACP =
]AB1P = ]C1B1P .
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A

B CP

B1

Q

C1

¶ First solution. Let T be the second intersection of AC1 with (APC). Then readily
4PC1T ∼ 4ABC. Consequently, QC1 ‖ AC implies TC1QP cyclic. Finally, TQ ‖ AB
now follows from the cyclic condition, so T = B1 as desired.

¶ Second solution. One may also use barycentric coordinates. Let P = (0,m, n) and
Q = (0, r, s) with m+ n = r + s = 1. Once again,

(APB) : −a2yz − b2zx− c2xy + (x+ y + z)(a2m · z) = 0.

Set C1 = (s− z, r, z), where C1Q ‖ AC follows by (s− z)+ r+ z = 1. We solve for this z.

0 = −a2rz + (s− z)(−b2z − c2r) + a2mz

= b2z2 + (−sb2 + rc2)z − a2rz + a2mz − c2rs

= b2z2 + (−sb2 + rc2 + a2(m− r))z − c2rs

=⇒ 0 = rb2
(z
r

)2
+ (−sb2 + rc2 + a2(m− r))

(z
r

)
− c2s.

So the quotient of the z and y coordinates of C1 satisfies this quadratic. Similarly, if
B1 = (r − y, y, s) we obtain that

0 = sc2
(y
s

)2
+ (−rc2 + sb2 + a2(n− s))

(y
s

)
− b2r

Since these two quadratics are the same when one is written backwards (and negated), it
follows that their roots are reciprocals. But the roots of the quadratics represent z

y and y
z

for the points C1 and B1, respectively. This implies (with some configuration blah) that
the points B1 and C1 are collinear with A = (1, 0, 0) (in some line of the form y

z = k), as
desired.

§7l Shortlist 2011 G2
Let A1A2A3A4 be a non-cyclic quadrilateral. For 1 ≤ i ≤ 4, let Oi and ri be the
circumcenter and the circumradius of triangle Ai+1Ai+2Ai+3 (where Ai+4 = Ai). Prove
that

1

O1A2
1 − r21

+
1

O2A2
2 − r22

+
1

O3A2
3 − r23

+
1

O4A2
4 − r24

= 0.
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(Available online at https://aops.com/community/p2739321.)

Let ωi be the circle with center Oi and radius ri. Set A1 = (1, 0, 0), A2 = (0, 1, 0),
A3 = (0, 0, 1), and as usual let a = A2A3 and so on. Let A4 = (p, q, r), where p+q+r = 1.
Let T = a2qr + b2rp+ c2pq for brevity.

The circumcircle of 4A2A3A4 can be seen to have equation

−a2yz − b2zx− c2xy + (x+ y + z)

(
T

p
x

)
= 0.

By power of a point, we thus have that

O1A
2
1 − r21 = (1 + 0 + 0) · T

p
· 1 =

T

p
.

Similarly,
O2A

2
2 − r22 =

T

q
and O3A

2
3 − r23 =

T

r
.

Finally, we obtain O4A
2
4 − r24 by plugging in A4 into (A1A2A3), which gives a value of

−T . Hence the left-hand side of our expression is

p

T
+

q

T
+

r

T
− 1

T
= 0

since p+ q + r = 1.

§7m Romania TST 2010/6/2
Let ABC be a scalene triangle, let I be its incenter, and let A1, B1, and C1 be the points
of contact of the excircles with the sides BC, CA, and AB, respectively. Prove that the
circumcircles of the triangles AIA1, BIB1, and CIC1 have a common point different
from I.

Let A = (1, 0, 0), B = (0, 1, 0) and C = (0, 0, 1) and define a, b, c in the usual fashion.
Then, we get

A1 = (0 : s− b : s− c)

and its cyclic variants, as well as I = (a : b : c).
Let us calculate ωA = (AIA1) and its cyclic variants. Upon using the generic circle

form −a2yz − b2zx− c2xy + (x+ y + z)(ux+ vy + wz) we find u = 0 and the system

abc = vb+ wc

a(s− b)(s− c) = v(s− b) + w(s− c)

Solving, we find that v = ac(s−c)(2b−s)
s(b−c) and w = ab(s−b)(2c−s)

s(c−b) . In summary:

ωA : 0 = −a2yz − b2zx− c2xy

+ (x+ y + z)

(
ac(s− c)(2b− s)

s(b− c)
y +

ab(s− b)(2c− s)

s(c− b)
z

)
One can then apply symmetry and compute the pairwise radical axes. However, a nice

trick, due to Anant Mudgal, is to instead compute the radical axis with the circumcircle
instead.
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We define `A as the radical axis of the circumcircle of 4ABC and ωA. Consequently,

`A : c(s− c)(2b− s)y + b(s− b)(2c− s)z = 0.

If we define `B and `C similarly, then we find that `A, `B, `C concur at a point P (by
Ceva, since

∏
cyc

c(s−c)(2b−s)
b(s−b)(2c−s) = 1). Then line PI is the common radical axis of the three

circles.

Remark (Ryan Li). Technically, we need to also show that the three circles are not all
tangent.

§7n ELMO 2012/5
Let ABC be an acute triangle with AB < AC, and let D and E be points on side BC
such that BD = CE and D lies between B and E. Suppose there exists a point P inside
ABC such that PD ‖ AE and ∠PAB = ∠EAC. Prove that ∠PBA = ∠PCA.

(Available online at https://aops.com/community/p2728469.)

¶ First solution (barycentric coordinates). Suppose that D = (0 : 1 : t) and E = (0 :
t : 1). Let Q be the isogonal conjugate of P ; evidently Q lies on AE, so Q = (k : t : 1)

for some k. Moreover, P =
(
a2

k : b2

t : c2
)

.

A

B CED

P
Q

So the condition that PD ‖ AE implies that P and D are collinear with the point at
infinity (−(1 + t) : t : 1) along line AE, so we find

0 =

∣∣∣∣∣∣
a2/k b2/t c2

0 1 t
−(1 + t) t 1

∣∣∣∣∣∣
which can be rewritten as

0 = det

∣∣∣∣∣∣
a2/k b2/t c2

0 1 t
−(1 + t) 1 + t 1 + t

∣∣∣∣∣∣ = (1 + t)

∣∣∣∣∣∣
a2/k b2/t c2

0 1 t
−1 1 1

∣∣∣∣∣∣ .
Expanding the determinant, we derive that

0 = a2(1− t) + k(c2 − b2)

and applying the perpendicular bisector formula, we derive that BQ = QC. So ∠QBC =
∠QCB, implying ∠PBA = ∠PCA.
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¶ Second solution (isogonality lemma). Let R be the reflection of P across the
midpoint of BC, so PBRC is a parallelogram. The conditions BD = CE and PD ‖ AE
imply that R lies on AE. Then since AP and AR are isogonal, isogonality lemma implies
that B, C, BP ∩AC and CP ∩AB are concyclic, done.

§7o USA TST 2004/4
Let ABC be a triangle. Choose a point D in its interior. Let ω1 be a circle passing
through B and D and ω2 be a circle passing through C and D so that the other point of
intersection of the two circles lies on AD. Let ω1 and ω2 intersect side BC at E 6= B
and F 6= C, respectively. Let X = DF ∩AB and Y = DE ∩AC. Show that XY ‖ BC.
(Available online at https://aops.com/community/p456576.)

The following solution is with Mason Fang. We use barycentrics on 4DBC, with
a = BC, b = DC, c = DB. Let’s write the circles as

ω1 : −a2yz − b2zx− c2xy + (x+ y + z)(mz) = 0

ω2 : −a2yz − b2zx− c2xy + (x+ y + z)(ny) = 0

for constants m,n ∈ R. Then

E = (0 : m : a2 −m)

F = (0 : a2 − n : n).

Then A lies on the radical axis mz − ny = 0, so we may let

A = (u : m : n).

Thus, intersecting cevians,

X = (u : a2 − n : n)

Y = (u : m : a2 −m).

Then XY is the line y+z
x = a2

u which is parallel to BC (it passes through (0 : 1 : −1)).

§7p TSTST 2012/2
Let ABCD be a quadrilateral with AC = BD. Diagonals AC and BD meet at P . Let
ω1 and O1 denote the circumcircle and circumcenter of triangle ABP . Let ω2 and O2

denote the circumcircle and circumcenter of triangle CDP . Segment BC meets ω1 and
ω2 again at S and T (other than B and C), respectively. Let M and N be the midpoints
of minor arcs S̃P (not including B) and T̃P (not including C). Prove that MN ‖ O1O2.
(Available online at https://aops.com/community/p2745851.)

Let Q be the second intersection point of ω1, ω2. Suffice to show QP ⊥MN . Now Q
is the center of a spiral congruence which sends AC 7→ BD. So 4QAB and 4QCD are
similar isosceles. Now,

]QPA = ]QBA = ]DCQ = ]DPQ

and so QP is bisects ∠BPC.
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Q

B C

A

D

P

O1
O2

S T

M N
I

Now, let I = BM ∩CN ∩ PQ be the incenter of 4PBC. Then IM · IB = IP · IQ =
IN · IC, so BMNC is cyclic, meaning MN is antiparallel to BC through ∠BIC. Since
QPI passes through the circumcenter of 4BIC, it follows now QPI ⊥MN as desired.

§7q IMO 2004/5
In a convex quadrilateral ABCD, the diagonal BD bisects neither the angle ABC nor
the angle CDA. The point P lies inside ABCD and satisfies

∠PBC = ∠DBA and ∠PDC = ∠BDA.

Prove that ABCD is a cyclic quadrilateral if and only if AP = CP .

(Available online at https://aops.com/community/p99759.)

Apply barycentric coordinates to 4PBD with P = (1, 0, 0), B = (0, 1, 0) and D =
(0, 0, 1). Define a = BD, b = DP and c = PB.

Since A and C are isogonal conjugates with respect to 4PBD, we set

A = (au : bv : cw) and C =

(
a

u
:
b

v
:
c

w

)
.

For brevity define M = au+ bv + cw and N = avw + bwu+ cuv.
We now compute each condition.

Claim — Quadrilateral ABCD is cyclic if and only if N2 = u2M2.

Proof. W know a circle through B and D is a locus of points with

a2yz + b2zx+ c2xy

x(x+ y + z)

is equal to some constant. Therefore quadrilateral ABCD is cyclic if and only if abc·N
au·M is

equal to abc·uvw·M
avw·N which rearranges to N2 = u2M2.
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Claim — We have PA = PC if and only if N2 = u2M2.

Proof. We have the displacement vector
−→
PA = 1

M (bv + cw,−bv,−cw). Therefore,

M2 · |PA|2 = −a2(bv)(cw) + b2(cw)(bv + cw) + c2(bv)(bv + cw)

= bc(−a2vw + (bw + cv)(bv + cw)).

In a similar way (by replacing u, v, w with their inverses) we have(
N

uvw

)2

· |PC|2 = (vw)−2 · bc(−a2vw + (bv + cw)(bw + cv))

⇐⇒ N2 · |PC|2 = u2bc(−a2vw + (bw + cv)(bv + cw))

These are equal if and only if N2 = u2M2, as desired.

§7r Shortlist 2006 G4
A point D is chosen on the side AC of a triangle ABC with ∠C < ∠A < 90◦ in such a
way that BD = BA. The incircle of ABC is tangent to AB and AC at points K and L,
respectively. Let J be the incenter of triangle BCD. Prove that the line KL intersects
the line segment AJ at its midpoint.

(Available online at https://aops.com/community/p842901.)

Let K ′ and L′ be the reflections of A across K and L.

K = (s− b : s− a : 0) =⇒ K ′ = (a− b : 2(s− a) : 0)

L = (s− c : 0 : s− a) =⇒ L′ = (a− c : 0 : 2(s− a)).

B

A CD

II
J

K

L

K ′

L′

Now consider the phantom point J ′ = (a : b : t− a) such that CJ ′ bisects ∠ACB and
J ′ lies on K ′L′. To compute its coordinates, we write

0 = det

a− b 2(s− a) 0
a− c 0 2(s− a)
a b t− a

 =⇒ (a− c)(t− a) + b(a− b) = 2a(s− a).

So,

t =
a(b+ c− a) + a(a− c)− b(a− b)

a− c
=

b2

a− c
.

69

https://aops.com/community/p842901


Evan Chen《陳誼廷》 — 31 January 2024 Auto-Generated EGMO Solutions Treasury

In other words J =
(
a(a− c) : b(a− c) : b2 − a(a− c)

)
. So if E = BJ ∩AC then

CE =
a− c

b2
· a.

Now let F be the foot of ∠DBC-bisector on BC. Since D = (2SC − b2 : 0 : 2SA) (by
reflecting the foot of B) the angle bisector theorem applied to BD = c and BC = a
implies that

CF =
CD · a
a+ c

=

2SC−b2

2SA+2SC−b2
· a

a+ c
=

a− c

b2
· a = CE

from which we conclude that E = F as desired.
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8 Solutions for Inversion

Humans are like high templar. They’re fragile, weak, and
cause storms when they’re mad. And they love giving
feedback to others despite being unable to receive feedback
themselves.

§8a BAMO 2011/4
A point D lies inside triangle ABC. Let A1, B1, C1 be the second intersection points of
the lines AD, BD, and CD with the circumcircles of BDC, CDA, and ADB, respectively.
Prove that

AD

AA1
+

BD

BB1
+

CD

CC1
= 1.

(Available online at https://aops.com/community/p13035680.)

Inversion at D reduces this to a Ceva picture, which completely destroys the problem.

§8b Shortlist 2003 G4
Let Γ1, Γ2, Γ3, Γ4 be distinct circles such that Γ1, Γ3 are externally tangent at P , and
Γ2, Γ4 are externally tangent at the same point P . Suppose that Γ1 and Γ2, Γ2 and Γ3,
Γ3 and Γ4, Γ4 and Γ1 meet at A, B, C, D, respectively, and that all these points are
different from P . Prove that

AB ·BC

AD ·DC
=

PB2

PD2
.

(Available online at https://aops.com/community/p119988.)

Invert arcound P with radius 1.
The conditions in the problem imply that Γ∗

1 and Γ∗
3 are parallel lines, as are Γ∗

2 and
Γ∗
4. So A∗B∗C∗D∗ is a parallelogram,

A∗B∗ = D∗C∗ ⇐⇒ AB

PA · PB
=

CD

PC · PD

and A∗D∗ = B∗C∗. ⇐⇒ AD

PA · PD
=

BC

PB · PD

Take the quotient of these two to extract the desired result.

§8c EGMO 2013/5
Let Ω be the circumcircle of the triangle ABC. The circle ω is tangent to the sides
AC and BC, and it is internally tangent to the circle Ω at the point P . A line parallel
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to AB intersecting the interior of triangle ABC is tangent to ω at Q. Prove that
∠ACP = ∠QCB.

(Available online at https://aops.com/community/p3014767.)

First, let us extend AQ to meet BC at Q1. By homothety, we see that Q1 is just the
contact point of the A-excircle with BC.

A

B C

P

IA

Q1

Q

Now let us perform an inversion around A with radius
√
AB ·AC followed by a reflection

around the angle bisector; call this map Ψ. Note that Ψ fixes B and C. Moreover it
swaps BC and (ABC). Hence, this map swaps the A-excircle with the A-mixtilinear
incircle ω. Hence Ψ swaps P and Q1. It follows that AP and AQ1 are isogonal with
respect to ∠BAC, meaning ∠BAP = ∠CAQ1. Since ∠CAQ = ∠CAQ1 we are done.

§8d Russia 2009/10.2
In triangle ABC with circumcircle Ω, the internal angle bisector of ∠A intersects BC at
D and Ω again at E. The circle with diameter DE meets Ω again at F . Prove that AF
is a symmedian of triangle ABC.

(Available online at https://aops.com/community/p1493622.)

A
√
bc inversion fixes the circle with diameter DE. Hence it maps F to the midpoint

of BC. This implies the result.

§8e Shortlist 1997/9
Let A1A2A3 be a non-isosceles triangle with incenter I. Let Γi, i = 1, 2, 3, be the smaller
circle through I tangent to AiAi+1 and AiAi+2 (indices taken mod 3). Let Bi, i = 1, 2, 3,
be the second point of intersection of Γi+1 and Γi+2. Prove that the circumcenters of the
triangles A1B1I, A2B2I, A3B3I are collinear.

(Available online at https://aops.com/community/p1219054.)
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It suffices to prove the circles are coaxial. Let DEF be the intouch triangle. Note
thatof Γ∗

1 is exactly the circle with diameter ID, etc.
We proceed by inversion around I.

Claim — The triangle A∗
1A

∗
2A

∗
3 is the medial triangle of DEF .

Proof. Circles Γ2 and Γ3 are mapped to the circles with diameter IE and IF , hence
their second intersection A∗

1 is exactly the midpoint of EF .

Claim — The triangle B∗
1B

∗
2B

∗
3 is homothetic to triangle DEF .

Proof. This is the triangle determined by the lines Γ∗
1, Γ∗

2, Γ∗
3. Since Γ∗

1 is clearly
perpendicular to A1I, it is parallel to EF , and similarly.

This means A∗
1B

∗
1 , A∗

2B
∗
2 , A∗

3B
∗
3 are indeed concurrent as needed.

§8f IMO 1993/2
Let A, B, C, D be four points in the plane, with C and D on the same side of the line
AB, such that AC ·BD = AD ·BC and ∠ADB = 90◦ +∠ACB. Find the ratio AB·CD

AC·BD ,
and prove that the circumcircles of the triangles ACD and BCD are orthogonal.

(Available online at https://aops.com/community/p99766.)

Answer:
√
2.

The conditions should translate to ∠D∗B∗C∗ = 90◦ and B∗D∗ = B∗C∗.

§8g IMO 1996/2
Let P be a point inside a triangle ABC such that

∠APB − ∠ACB = ∠APC − ∠ABC.

Let D, E be the incenters of triangles APB, APC, respectively. Show that the lines AP ,
BD, CE concur.

(Available online at https://aops.com/community/p3459.)

Invert around A to eliminate the angle condition. One should find that ∠C∗B∗P ∗ =
∠B∗C∗P ∗.

How to handle the incenters? Why does ∠AD∗B∗ = 1
2∠AP ∗B∗?

§8h IMO 2015/3
Let ABC be an acute triangle with AB > AC. Let Γ be its circumcircle, H its orthocenter,
and F the foot of the altitude from A. Let M be the midpoint of BC. Let Q be the
point on Γ such that ∠HQA = 90◦ and let K be the point on Γ such that ∠HKQ = 90◦.
Assume that the points A, B, C, K and Q are all different and lie on Γ in this order.
Prove that the circumcircles of triangles KQH and FKM are tangent to each other.
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(Available online at https://aops.com/community/p5079655.)

Let L be on the nine-point circle with ∠HML = 90◦. The negative inversion at H
swapping Γ and nine-point circle maps

A←→ F, Q←→M, K ←→ L.

In the inverted statement, we want line ML to be tangent to (AQL).

A

B C

O

H

Q

N

T

N9

M F

L

K

Claim — LM ‖ AQ.

Proof. Both are perpendicular to MHQ.

Claim — LA = LQ.

Proof. Let N and T be the midpoints of HQ and AH, and O the circumcenter. As MT
is a diameter, we know LTNM is a rectangle, so LT passes through O. Since LOT ⊥ AQ
and OA = OQ, the proof is complete.

Together these two claims solve the problem.
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9 Solutions for Projective Geometry

I don’t think Jane Street would appreciate all their
thousands of dollars going to fruit snacks.

Debbie Lee, at MOP 2022

§9a TSTST 2012/4
In scalene triangle ABC, let the feet of the perpendiculars from A to BC, B to CA, C
to AB be A1, B1, C1, respectively. Denote by A2 the intersection of lines BC and B1C1.
Define B2 and C2 analogously. Let D, E, F be the respective midpoints of sides BC,
CA, AB. Show that the perpendiculars from D to AA2, E to BB2 and F to CC2 are
concurrent.
(Available online at https://aops.com/community/p2745854.)

We claim that they pass through the orthocenter H. Indeed, consider the circle with
diameter BC, which circumscribes quadrilateral BCB1C1 and has center D. Then by
Brokard theorem, AA2 is the polar of line H. Thus DH ⊥ AA2.

§9b Singapore TST
Let ω and O be the circumcircle and circumcenter of right triangle ABC with ∠B = 90◦.
Let P be any point on the tangent to ω at A other than A, and suppose ray PB intersects
ω again at D. Point E lies on line CD such that AE ‖ BC. Prove that P , O, and E are
collinear.

Let F be the point diametrically opposite B, and apply Pascal theorem to AAFBDC.

A C

B

D

P

O

E

F
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§9c Canada 1994/5
Let ABC be an acute triangle. Let AD be the altitude on BC, and let H be any
interior point on AD. Lines BH and CH, when extended, intersect AC, AB at E and
F respectively.

Prove that ∠EDH = ∠FDH.
(Available online at https://aops.com/community/p2268953.)

Let line EF meet BC again at X. Moreover, let line AH meet line EF at Y .

A

B CD

H

E

F

X

Y

Note derive that (X,D;B,C) = −1; perspectivity at A gives (X,Y ;E,F ) = −1. In
any case, since we know ∠XDY = 90◦, the harmonic bundle tells us DH bisects ∠FDE.

§9d ELMO SL 2012 G3
Let ABC be a triangle with incenter I. The foot of the perpendicular from I to BC is
D, and the foot of the perpendicular from I to AD is P . Prove that ∠BPD = ∠DPC.
(Available online at https://aops.com/community/p2728462.)

Let 4DEF be the contact triangle, and X be the second intersection of AD with the
incircle.

A

B C

I

D

E

F
P

T

X

Note that XFED is harmonic due to the tangents at A, and thus the tangents to D
and X meet on EF , say at T . In that case AXD is the polar of point T , hence IT ⊥ AD,
hence P = IT ∩AD.

Now (TD;BC) = −1 since AD, BE, CF concur at the Gergonne point. Since
∠TPD = 90◦ this gives the desired angle bisection.
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Remark. After showing T lies on line EF , Anka Hu points out that one can avoid appealing
to the Gergonne point as follows: one has

(TD;BC)
E
= (FD;Y E) = −1

where Y is the second intersection of BE with the incircle. (The quadrilateral Y FED is
harmonic due to the tangents from B.)

§9e IMO 2014/4
Let P and Q be on segment BC of an acute triangle ABC such that ∠PAB = ∠BCA
and ∠CAQ = ∠ABC. Let M and N be points on AP and AQ, respectively, such that
P is the midpoint of AM and Q is the midpoint of AN . Prove that BM and CN meet
on the circumcircle of 4ABC.
(Available online at https://aops.com/community/p3543136.)

We give three solutions.

¶ First solution by harmonic bundles. Let BM intersect the circumcircle again at X.
A

B CPQ

MN

X

The angle conditions imply that the tangent to (ABC) at B is parallel to AP . Let ∞
be the point at infinity along line AP . Then

−1 = (AM ;P∞)
B
= (AX;BC).

Similarly, if CN meets the circumcircle at Y then (AY ;BC) = −1 as well. Hence X = Y ,
which implies the problem.

¶ Second solution by similar triangles. Once one observes 4CAQ ∼ 4CBA, one can
construct D the reflection of B across A, so that 4CAN ∼ 4CBD. Similarly, letting E
be the reflection of C across A, we get 4BAP ∼ 4BCA =⇒ 4BAM ∼ 4BCE. Now
to show ∠ABM + ∠ACN = 180◦ it suffices to show ∠EBC + ∠BCD = 180◦, which
follows since BCDE is a parallelogram.
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¶ Third solution by barycentric coordinates. Since PB = c2/a we have

P = (0 : a2 − c2 : c2)

so the reflection ~M = 2~P − ~A has coordinates

M = (−a2 : 2(a2 − c2) : 2c2).

Similarly N = (−a2 : 2b2 : 2(b2 − a2)). Thus

BM ∩ CN = (−a2 : 2b2 : 2c2)

which clearly lies on the circumcircle, and is in fact the point identified in the first
solution.

§9f Shortlist 2004 G8
Given a cyclic quadrilateral ABCD, let M be the midpoint of the side CD, and let N
be a point on the circumcircle of triangle ABM . Assume that the point N is different
from the point M and satisfies AN

BN = AM
BM . Prove that the points E, F , N are collinear,

where E = AD ∩BC and F = AC ∩BD.
(Available online at https://aops.com/community/p243438.)

We present two solutions.

¶ First solution by projective geometry. Let T = EF ∩CD, and K = AB∩CD. Then
KT ·KM = KC ·KD (the latter since (KM ;CD) = −1), since ABTM is cyclic.

A

B

CD

E

F

M

N

TK

Now that we know ABTM is cyclic, we obtain

−1 = (DC;TK)
F
= (AB;XK)

T
= (AB;NM)

where X = AB ∩ FT . This completes the proof.
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¶ Second solution by complex numbers (Anant Mudgal). By Brokard theorem it’s
enough to check that N lies on the polar of K = AB ∩ CD. We use complex numbers
with ABCD the unit circle. First, from the condition, we ought to have

−1 = (AB;MN) =
m− a

m− b
÷ n− a

n− b

and so solving gives

n =
2ab−m(a+ b)

a+ b− 2m
.

To deal with the polar, we use the following lemma (which seems fundamental yet not
so well-known).

Lemma
N lies on the polar of K if and only if

nk + kn = 2.

Proof. If KX and KY are tangents, we have 2xy
x+y = k and 2

x+y = k, and we want
n+ xyn = x+ y, which rearranges to the lemma.

To finish, we have k = cd(a+b)−ab(c+d)
cd−ab ; then a computation shows that

nk + kn =
(a+ b)(c+ d)− 4ab

2(cd− ab)
+

4cd− (a+ b)(c+ d)

2(cd− ab)
= 2

as desired.

Remark. Times change. Rumor has it that in 2005 when this problem was given at MOP,
no contestants solved it. (I even heard this was an example of “why you should learn complex
numbers”.) Even in 2010 ago the use of cross ratios in olympiad geometry was not canon; it
was an advanced technique that you only learned your second or third time at MOP. These
days, it seems even the middle schoolers know what a harmonic bundle is.

§9g Sharygin 2013/16
The incircle of 4ABC touches BC, CA, AB at points A′, B′ and C ′ respectively. The
perpendicular from the incenter I to the C-median meets the line A′B′ in point K. Prove
that CK ‖ AB.

Let ω be the circumcircle of 4A′B′C and let K ′ be the intersection of line A′B′ with
the line through C parallel to AB. Furthermore, let Z be the foot of the perpendicular
from I to CM and observe that Z ∈ ω. It suffices to prove that ∠K ′ZL is right, because
this will imply K ′ = K.
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C

A B

I

C ′

A′

B′

M

K ′

Z

L

Let P∞ be the point at infinity on line AB. Then the quadruple (A,B;M,P∞) is clearly
harmonic. Taking perspectivity from C onto line A′B′ we observe that (B′, A′;L,K ′) is
harmonic.

Now consider point Z. Observe that ZL is an angle bisector of ∠BZA′, since B′C =
A′C implies the arcs B′C and A′C are equal. Since we have a harmonic bundle, we
conclude that LZ ⊥ K ′Z as desired.

§9h Shortlist 2004 G2
Circle Γ has diameter AB, and line d is perpendicular to AB. Assume d does not intersect
Γ and is closer to B than A. Let C be an arbitrary point on Γ, different from the points
A and B. Line AC meets d at D. One of the two tangents from the point D to the circle
Γ touches Γ at a point E on the same side of AC as B. Line BE meets d at F . Line AF
meets Γ at a point G different from A. Prove that the reflection of the point G in the
line AB lies on the line CF .

(Available online at https://aops.com/community/p152744.)

Pascal’s theorem on AGEEBC shows that BC ∩GE lies on d.
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A B

DC

E

F

G

G′

Let G′ be the reflection of G over AB. Then applying Pascal’s theorem to CG′GEBB
forces CG′ ∩BE to lie on d, so the intersection must be the point F .

§9i January TST 2013/2
Let ABC be an acute triangle. Circle ω1, with diameter AC, intersects side BC at F
(other than C). Circle ω2, with diameter BC, intersects side AC at E (other than C).
Ray AF intersects ω2 at K and M with AK < AM . Ray BE intersects ω1 at L and N
with BL < BN . Prove that lines AB, ML, NK are concurrent.

(Available online at https://aops.com/community/p3161948.)

Let CD be the third altitude. Quadrilateral KLMN is cyclic, by power of a point;
after all we have NH ·LH = CH ·DH = KH ·MH (since CNADL and CMBDK are
cyclic). Denote its circumcircle by γ. Then its center must be C, since it lies on the
perpendicular bisectors of KM , LN .
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C

A B

H

D

E

F

K L

N

M

T

Now AN and AL are tangents to γ, since ∠ANC = ∠ALC = 90◦. Similarly, so are
BK and BM . So by Brokard theorem it follows H is the pole of AB. Also by Brokard
theorem, NK ∩ LM lies on the polar of H, which was what we wanted to prove.

§9j Brazil 2011/5
Let ABC be an acute triangle with orthocenter H and altitudes BD, CE. The circum-
circle of ADE cuts the circumcircle of ABC at F 6= A. Prove that the angle bisectors of
∠BFC and ∠BHC concur at a point on BC.

(Available online at https://aops.com/community/p2477427.)

¶ First solution (harmonic). First, notice that lines AF , ED and BC concur at a
point T , which is the radical center of the circumcircle, the circle with diameter AH (of
course H is the orthocenter of ABC), and the circle with diameter BC.

Now let L be the foot of A on BC and X the reflection of H over L (which lies on the
circumcircle). In light of angle bisector theorem, it suffices to show BFCX is harmonic.
But now

−1 = (TL;BC)
A
= (FX;BC)

since AL, BD, CE meet at the orthocenter H. (We are given F 6= A, thus AB 6= AC,
so DE 6‖ BC.)
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A

B C

H

D

E

F

L

X

T

¶ Second solution (variant by David Hu). As before it suffices to show FBXC is
harmonic, where X is the reflection of H. Projecting from A onto (AH), it’s equivalent
to show FEHD is a harmonic quadrilateral.

A

B C

H

D

E

F

L

X

M

N

Y

Let M be the midpoint of BC. Then

• It’s known that ME and MD are tangents (for example, by noting that NM is a
diameter of the nine-point circle for N the midpoint of AH).

• Moreover, MHF are collinear by considering the antipode Y of A on MH.

These two results together imply FEHD is harmonic.

¶ Third solution (spiral similarity). Note that F is Miquel point of complete quadrilat-
eral BEDC. Thus BF/CF = BE/CD. The fact BE/CD = BH/CH is obvious.

§9k ELMO SL 2013 G3
In non-right triangle ABC, a point D lies on line BC. The circumcircle of ABD meets
AC at F (other than A), and the circumcircle of ADC meets AB at E (other than A).
Prove that as D varies, the circumcircle of AEF always passes through a fixed point
other than A, and that this point lies on the median from A to BC.
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(Available online at https://aops.com/community/p3151962.)

After a
√
bc inversion around A, it suffices to prove that for variable D∗ on (ABC),

the line through E∗ = BD∗ ∩AC and F ∗ = CD∗ ∩AB passes through a fixed point on
the A-symmedian. By Brokard’s theorem this is the pole of BC.

Alternatively, use barycentric coordinates with A = (1, 0, 0), etc. Let D = (0 : m : n)
with m + n = 1. Then the circle ABD has equation −a2yz − b2zx − c2xy + (x + y +
z)
(
a2m · z

)
. To intersect it with side AC, put y = 0 to get (x+ z)(a2mz) = b2zx =⇒

b2

a2m
· x = x+ z =⇒

(
b2

a2m
− 1
)
x = z, so

F = (a2m : 0 : b2 − a2m)

Similarly,
G = (a2n : c2 − a2n : 0).

Then, the circle (AFG) has equation

−a2yz − b2zx− c2xy + a2(x+ y + z)(my + nz) = 0.

Upon picking y = z = 1, we easily see there exists a t such that (t : 1 : 1) is on the circle,
implying the conclusion.

One can also use trigonometry directly. Let M be the midpoint of BC. By power of
a point, c · BE + b · CF = a · BD + a · CD = a2 is constant. Fix a point D0; and let
P0 = AM ∩ (AE0F0). For any other point D, we have E0E

F0F
= b

c = sin∠BAM
sin∠CAM = P0E0

P0F0
from

the extended law of sines, so triangles P0E0E and P0F0F are directly similar, whence
AEP0F is cyclic, as desired.

§9l APMO 2008/3
Let Γ be the circumcircle of a triangle ABC. A circle passing through points A and C
meets the sides BC and BA at D and E, respectively. The lines AD and CE meet Γ
again at G and H, respectively. The tangent lines to Γ at A and C meet the line DE at
L and M , respectively. Prove that the lines LH and MG meet at Γ.
(Available online at https://aops.com/community/p1073985.)

¶ First solution. We will ignore the condition that ACDE is cyclic.
Let T = AD ∩ CE and O = BT ∩AC.
Now we can take a projective transformation that preserves the circumcircle of ABC

and sends O to the center of the circle. In that case, AC is a diameter, and moreover T
lies on the B-median of 4ABC, meaning that DE ‖ AC.

From this we deduce that ALMC is a rectangle. Now we see that ALHE and DGMC
are cyclic. From this we can use angle chasing to compute ]HKG as

]HKG = ]LKM = −]KML− ]MLK

= −]GMD − ]ELH

= −]GCD − ]EAH = −]GCB − ]BAH

= −]GAB − ]BAH = −]GAH = −]GBH

= ]HBG.

Hence H, B, K, G are concyclic and we are done.
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A C

B

T

O

DE

G

H
ML

K

¶ Second solution (Chen Sun). Let lines DE and AC meet at T , and let X be the
second intersection of BT with the circumcircle. We claim X is the intersection of lines
LH and MG.

B

A C

H

GD

E

T

X

L

M

Indeed, Pascal’s theorem on XGACCB implies that XG ∩ CC, GA ∩ CB = D, and
AC ∩ BX = T are collinear. Since M = DT ∩ CC, it follows that M lies on line XG.
Similarly, H lies on line XL (by Pascal on XHCAAB).

Remark. Colin Tang points out that the condition AEDC cyclic implies that ED, HG,
BB are actually parallel to each other (they’re all anti-parallel to AC). But these three
lines are concurrent anyways, by Pascal theorem on BBAGHC. So you can think of this
as giving a reason to believe the cyclic condition doesn’t matter; it’s only saying that the
concurrency point lies on the infinity line, which isn’t special from a projective standpoint.

I have a conjecture that in an problem where up to two conditions are not projective,
then those conditions can be deleted.

§9m ELMO SL 2014 G2
Suppose ABCD is a cyclic quadrilateral inscribed in the circle ω. Let E = AB ∩ CD
and F = AD ∩ BC. Let ω1 and ω2 be the circumcircles of triangles AEF and CEF ,
respectively. Let G and H be the intersections of ω and ω1, ω and ω2, respectively, with
G 6= A and H 6= C. Show that AC, BD, and GH are concurrent.

(Available online at https://aops.com/community/p3557483.)

Let K be the radical center of ω, ω1, ω2, so that K is the intersection of AG, CH,
and EF . Let R = AC ∩ GH. The problem is to prove that R lies on BD. Hence by
Brokard’s theorem on ABCD, it suffices to check that the polar of R is line EF .
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A
B

C
D

E

F

R
G

H

K

By applying Brokard’s theorem on quadrilateral ACGH, we find that the polar of R
is a line passing through the pole of AC and the point K = AG ∩ CH. But the pole
of AC lies on EF by Brokard’s theorem on ABCD. Moreover, so does the point K by
construction. Thus the pole of AC and the point K both lie on EF . Hence the polar of
R really is EF , and we are done.

§9n Shortlist 2005 G6
Let ABC be a triangle, and M the midpoint of its side BC. Let γ be the incircle of
triangle ABC. The median AM of triangle ABC intersects the incircle γ at two points
K and L. Let the lines passing through K and L, parallel to BC, intersect the incircle
γ again in two points X and Y . Let the lines AX and AY intersect BC again at the
points P and Q. Prove that BP = CQ.
(Available online at https://aops.com/community/p463068.)

Recall that AKLM , EF , and DI are concurrent at a point Z, say. Since XY and KL
are reflections about DI, it now follows that Z lies on XY as well.

A

B C

I

D

E

F

M

K

L

X

Y

Z

P Q

W

From harmonic quadrilaterals, we have (AZ;KL) = −1. Let∞ be the point at infinity
along BC and set W = A∞∩XY . Now

−1 = (AZ;KL)
∞
= (WZ;XY )

A
= (PQ;M∞)
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as desired.
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10 Solutions for Complete
Quadrilaterals

하늘을 봐 내 맘을 담은 조각을
저 자리에 둘 테니까 날 불러줘 그 언젠가
Look at the sky, I’ll leave a piece containing my heart there
So, call me when the time comes

PLEASE PLEASE , by EVERGLOW

§10a USAMO 2013/1
In triangle ABC, points P , Q, R lie on sides BC, CA, AB, respectively. Let ωA, ωB,
ωC denote the circumcircles of triangles AQR, BRP , CPQ, respectively. Given the
fact that segment AP intersects ωA, ωB, ωC again at X, Y , Z respectively, prove that
Y X/XZ = BP/PC.

(Available online at https://aops.com/community/p3041822.)

Let M be the concurrence point of ωA, ωB, ωC (by Miquel’s theorem).

A

B CP

Q

R

M
X

Y

Z

Then M is the center of a spiral similarity sending Y Z to BC. So it suffices to show
that this spiral similarity also sends X to P , but

]MXY = ]MXA = ]MRA = ]MRB = ]MPB

so this follows.

§10b Shortlist 1995 G8
Suppose that ABCD is a cyclic quadrilateral. Let E = AC ∩ BD and F = AB ∩ CD.
Prove that F lies on the line joining the orthocenters of triangles EAD and EBC.
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(Available online at https://aops.com/community/p185022.)

Consider the circle ω1 with diameter AB and the circle ω2 with diameter CD. Moreover,
let ω be the circumcircle of ABCD.

A
D

B C

F

E

We saw already in the proof of the Gauss line that the two orthocenters lie on the
radical axis of ω1 and ω2 (i.e., the Steiner line of ADBC). Hence the problem is solved
if we can prove that F also lies on this radical axis. But this follows from the fact that
F is actually the radical center of circles ω1, ω2 and ω.

§10c USA TST 2007/1
Circles ω1 and ω2 meet at P and Q. Segments AC and BD are chords of ω1 and ω2

respectively, such that segment AB and ray CD meet at P . Ray BD and segment
AC meet at X. Point Y lies on ω1 such that PY ‖ BD. Point Z lies on ω2 such that
PZ ‖ AC. Prove that points Q, X, Y , Z are collinear.

(Available online at https://aops.com/community/p982011.)

Let Y ′ be the second intersection of ray QX with ω1. We prove that PY ′ ‖ BD, which
implies that Q, X, Y are collinear. (The point Z is handled similarly.)

A

B

C

D

P

X QY ′ Z ′
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The given conditions imply that Q is the Miquel point of complete quadrilateral
DXAP . Hence quadrilaterals CQDX and BQXA are cyclic. Therefore,

]QY ′P = ]QCP = ]QCD = ]QXD = ]QXB

which implies PY ′ ‖ BX.
–

D

X

AP

Q

C

B

Y ′

§10d USAMO 2013/6
Let ABC be a triangle. Find all points P on segment BC satisfying the following
property: If X and Y are the intersections of line PA with the common external tangent
lines of the circumcircles of triangles PAB and PAC, then(

PA

XY

)2

+
PB · PC

AB ·AC
= 1.

(Available online at https://aops.com/community/p3043749.)

Let O1 and O2 denote the circumcenters of PAB and PAC. The main idea is to notice
that 4ABC and 4AO1O2 are spirally similar.

A

B C
P

O1

O2

X1

Y1

X2

Y2

X

Y
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Claim (Salmon theorem) — We have 4ABC
+∼ 4AO1O2.

Proof. We first claim 4AO1B
+∼ 4AO2C. Assume without loss of generality that

∠APB ≤ 90◦. Then
∠AO1B = 2∠APB

but
∠AO2C = 2 (180− ∠APC) = 2∠ABP.

Hence ∠AO1B = ∠AO2C. Moreover, both triangles are isosceles, establishing the first
similarity. The second part follows from spiral similarities coming in pairs.

Claim — We always have (
PA

XY

)2

= 1−
(

a

b+ c

)2

.

(In particular, this does not depend on P .)

Proof. We now delete the points B and C and remember only the fact that 4AO1O2

has angles A, B, C. The rest is a computation and several approaches are possible.
Without loss of generality A is closer to X than Y , and let the common tangents

be X1X2 and Y1Y2. We’ll perform the main calculation with the convenient scaling
OBOC = a, AOC = b, and AOB = c. Let B1 and C1 be the tangency points of X, and
let h = AM be the height of 4AOBOC .

O1 O2

A

P

M

X1

X2

X

Note that by Power of a Point, we have XX2
1 = XX2

2 = XM2 − h2. Also, by
Pythagorean theorem we easily obtain X1X2 = a2 − (b− c)2. So putting these together
gives

XM2 − h2 =
a2 − (b− c)2

4
=

(a+ b− c)(a− b+ c)

4
= (s− b)(s− c).

Therefore, we have
Then

XM2

h2
= 1 +

(s− b)(s− c)

h2
= 1 +

a2(s− b)(s− c)

a2h2
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= 1 +
a2(s− b)(s− c)

4s(s− a)(s− b)(s− c)
= 1 +

a2

4s(s− a)

= 1 +
a2

(b+ c)2 − a2
=

(b+ c)2

(b+ c)2 − a2
.

Thus (
PA

XY

)2

=

(
h

XM

)2

= 1−
(

a

b+ c

)2

.

To finish, note that when P is the foot of the ∠A-bisector, we necessarily have

PB · PC

AB ·AC
=

(
b

b+ca
)(

c
b+ca

)
bc

=

(
a

b+ c

)2

.

Since there are clearly at most two solutions as PA
XY is fixed, these are the only two

solutions.

§10e USA TST 2007/5
Triangle ABC is inscribed in circle ω. The tangent lines to ω at B and C meet at T .
Point S lies on ray BC such that AS ⊥ AT . Points B1 and C1 lie on ray ST (with C1 in
between B1 and S) such that B1T = BT = C1T . Prove that triangles ABC and AB1C1

are similar.

(Available online at https://aops.com/community/p982020.)

We ignore for now the point A, and think about the problem in terms of B1BCC1.
Let K = BB1 ∩ CC1 and R = B1C ∩ C1B. Hence R is the orthocenter of 4KB1C1

and C, B are the feet of the altitudes, while T is the midpoint of B1C1. It is known that
TB and TC are tangent to (KBCR), whence this circle actually coincides with ω.

B1 C1T

B

C

K

S

A1

A2
R

Now, we know that point A satisfies the following two conditions:

• Point A lies on ω.

• We have ∠TAS = 90◦.
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There are two points A with this condition, since the locus is the intersection of two
circles.

One of these points is the Miquel point of (convex) quadrilateral B1BCC1, and we
denote it by A1. It is the inverse of the intersection of the diagonals R. The other is the
Miquel point of quadrilateral B1CBC1 (which is self-intersecting), which we denote by A2;
indeed that point also lies on ω, and satisfies ]TA2R = ]TA2S = 90◦. In the first case
we get that 4ABC ∼ 4AB1C1 directly and in the other case we get 4ABC ∼ 4AC1B1

instead.

§10f IMO 2005/5
Let ABCD be a fixed convex quadrilateral with BC = DA and BC ∦ DA. Let two
variable points E and F lie on the sides BC and DA, respectively, and satisfy BE = DF .
The lines AC and BD meet at P , the lines BD and EF meet at Q, the lines EF and
AC meet at R. Prove that the circumcircles of the triangles PQR, as E and F vary,
have a common point other than P .

(Available online at https://aops.com/community/p282140.)

Let M be the Miquel point of complete quadrilateral ADBC; in other words, let M
be the second intersection point of the circumcircles of 4APD and 4BPC. (A good
diagram should betray this secret; all the points are given in the picture.) This makes
lots of sense since we know E and F will be sent to each other under the spiral similarity
too.

A

D C

B

E

F

P

Q

R

M

Thus M is the Miquel point of complete quadrilateral FACE. As R = FE ∩AC we
deduce FARM is a cyclic quadrilateral (among many others, but we’ll only need one).

Now look at complete quadrilateral AFQP . Since M lies on (DFQ) and (RAF ), it
follows that M is in fact the Miquel point of AFQP as well. So M lies on (PQR).

Thus M is the fixed point that we wanted.

Remark. Naturally, the congruent length condition can be relaxed to DF/DA = BE/BC.
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§10g USAMO 2006/6
Let ABCD be a quadrilateral, and let E and F be points on sides AD and BC,
respectively, such that AE

ED = BF
FC . Ray FE meets rays BA and CD at S and T ,

respectively. Prove that the circumcircles of triangles SAE, SBF , TCF , and TDE pass
through a common point.

(Available online at https://aops.com/community/p490691.)

A

B C

D

M

E

F

S

T

P

Q

Let M be the Miquel point of ABCD. Then M is the center of a spiral similarity
taking AD to BC. The condition guarantees that it also takes E to F . Hence, we
see that M is the center of a spiral similarity taking AB to EF , and consequently the
circumcircles of QAB, QEF , SAE, SBF concur at point M .

In other words, the Miquel point of ABCD is also the Miquel point of ABFE. Similarly,
M is also the Miquel point of EDCF , so all four circles concur at M .

§10h Balkan 2009/2
Let MN be a line parallel to the side BC of a triangle ABC, with M on the side AB
and N on the side AC. The lines BN and CM meet at point P . The circumcircles of
triangles BMP and CNP intersect at a point Q 6= P . Prove that ∠BAQ = ∠CAP .

(Available online at https://aops.com/community/p1484879.)

By Ceva, AP is a median, so we wish to show AQ is a symmedian. But Q is the center
of the spiral similarity

4QBM ∼ 4QNC

so the ratio of distance from Q to sides BM and CN is equal to BM : NC = AB : AC,
hence the result.
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§10i TSTST 2012/7
Triangle ABC is inscribed in circle Ω. The interior angle bisector of angle A intersects
side BC and Ω at D and L (other than A), respectively. Let M be the midpoint of side
BC. The circumcircle of triangle ADM intersects sides AB and AC again at Q and
P (other than A), respectively. Let N be the midpoint of segment PQ, and let H be
the foot of the perpendicular from L to line ND. Prove that line ML is tangent to the
circumcircle of triangle HMN .
(Available online at https://aops.com/community/p2745857.)

By angle chasing, equivalent to show MN ‖ AD, so discard the point H. We now
present a three solutions.

¶ First solution using vectors. We first contend that:

Claim — We have QB = PC.

Proof. Power of a Point gives BM · BD = AB · QB. Then use the angle bisector
theorem.

Now notice that the vector
−−→
MN =

1

2

(−−→
BQ+

−−→
CP
)

which must be parallel to the angle bisector since
−−→
BQ and

−−→
CP have the same magnitude.

¶ Second solution using spiral similarity. let X be the arc midpoint of BAC. Then
ADMX is cyclic with diameter AM , and hence X is the Miquel point X of QBPC is the
midpoint of arc BAC. Moreover XND collinear (as XP = XQ, DP = DQ) on (APQ).

A

B C

L

D M

Q

P

N

H

X

Then 4XNM ∼ 4XPC spirally, and

]XMN = ]XCP = ]XCA = ]XLA

thus done.
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¶ Third solution using barycentrics (mine). Once reduced to MN ‖ AB, straight bary
will also work. By power of a point one obtains

P =
(
a2 : 0 : 2b(b+ c)− a2

)
Q =

(
a2 : 2c(b+ c)− a2 : 0

)
=⇒ N =

(
a2(b+ c) : 2bc(b+ c)− ba2 : 2bc(b+ c)− ca2

)
.

Now the point at infinity along AD is (−(b+ c) : b : c) and so we need only verify

det

a2(b+ c) 2bc(b+ c)− ba2 2bc(b+ c)− ca2

0 1 1
−(b+ c) b c

 = 0

which follows since the first row is −a2 times the third row plus 2bc(b + c) times the
second row.

§10j TSTST 2012/2
Let ABCD be a quadrilateral with AC = BD. Diagonals AC and BD meet at P . Let
ω1 and O1 denote the circumcircle and circumcenter of triangle ABP . Let ω2 and O2

denote the circumcircle and circumcenter of triangle CDP . Segment BC meets ω1 and
ω2 again at S and T (other than B and C), respectively. Let M and N be the midpoints
of minor arcs S̃P (not including B) and T̃P (not including C). Prove that MN ‖ O1O2.

(Available online at https://aops.com/community/p2745851.)

Let Q be the second intersection point of ω1, ω2. Suffice to show QP ⊥MN . Now Q
is the center of a spiral congruence which sends AC 7→ BD. So 4QAB and 4QCD are
similar isosceles. Now,

]QPA = ]QBA = ]DCQ = ]DPQ

and so QP is bisects ∠BPC.

Q

B C

A

D

P

O1
O2

S T

M N
I

Now, let I = BM ∩CN ∩ PQ be the incenter of 4PBC. Then IM · IB = IP · IQ =
IN · IC, so BMNC is cyclic, meaning MN is antiparallel to BC through ∠BIC. Since
QPI passes through the circumcenter of 4BIC, it follows now QPI ⊥MN as desired.
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§10k USA TST 2009/2
Let ABC be an acute triangle. Point D lies on side BC. Let OB, OC be the circumcenters
of triangles ABD and ACD, respectively. Suppose that the points B, C, OB, OC lie
on a circle centered at X. Let H be the orthocenter of triangle ABC. Prove that
∠DAX = ∠DAH.

(Available online at https://aops.com/community/p1566047.)

Without loss of generality AC > AB. It is easy to verify via angle chasing that
∠AOBB = ∠AOCC. Since OBOCCB is cyclic, it follows that A is the Miquel point of
OBOCCB. Therefore, AOCXB is cyclic.

Set x = ∠BAD, y = ∠CAD. Then

∠BOBOC = ∠BOBD + ∠DOBC = 2x+B

=⇒ ∠BXC = 360− 4x− 2B

=⇒ ∠BAX = ∠BOCX = 2x+B − 90.

On the other hand, ∠BAH = 90 − B. From here it is easy to derive that ∠HAD =
x+B − 90 = ∠XAD, as desired.

§10l Shortlist 2009 G4
Given a cyclic quadrilateral ABCD, let E = AC ∩BD, F = AD ∩BC. The midpoints
of AB and CD are G and H, respectively. Show that EF is tangent at E to the circle
through the points E, G, and H.

(Available online at https://aops.com/community/p1932936.)

We present two approaches.

¶ First solution with harmonic bundles. Let M be the midpoint of EF . Then M , G,
H lie on the Gauss line of complete quadrilateral ADBC. Let P = AB ∩ CD and let
line EF meet AB and CD at X and Y , respectively.
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A

D

C

B

F

P

E

G

H

X

Y

M

Note that we have harmonic bundles

(XY ;EF ) = (PX;AB) = (PY ;DC) = −1.

We thus obtain XYGH cyclic from

PX · PG = PA · PB = PD · PC = PY · PH.

Now, from (ME;XY ) = −1 we have

ME2 = MX ·MY = MG ·MH

which gives the desired conclusion.

¶ Second solution using complex numbers (Sanjana Das). As before let P = AB∩CD.
We are supposed to verify that

e− f

e− g
÷ e− h

g − h
∈ R

to get the desired equality of directed angles. To avoid involving the point E at all, we
use the following two ideas:

• By Brokard’s theorem, the direction of e− f is perpendicular to p = ab(c+d)−cd(a+b)
ab−cd .

• Since 4EBA
−∼ 4ECD we also have 4EBG

−∼ 4ECH. Consequently, the
complex number (e− g)(e− h) has the same direction as (e− b)(e− c), and hence
the same direction as (d− b)(a− c).

On the other hand, g − h = a+b−c−d
2 . So putting this all together, we need to verify

i · ab(c+d)−cd(a+b)
ab−cd · a+b−c−d

2

(d− b)(a− c)
∈ R

which is immediate.
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§10m Shortlist 2006 G9
Points A1, B1, C1 are chosen on the sides BC, CA, AB of a triangle ABC respectively.
The circumcircles of triangles AB1C1, BC1A1, CA1B1 intersect the circumcircle of
triangle ABC again at points A2, B2, C2 respectively (A2 6= A,B2 6= B,C2 6= C). Points
A3, B3, C3 are symmetric to A1, B1, C1 with respect to the midpoints of the sides BC,
CA, AB respectively. Prove that the triangles A2B2C2 and A3B3C3 are similar.
(Available online at https://aops.com/community/p875036.)

We will prove the following claim, after which only angle chasing remains.

Claim — We have ]AC3B3 = ]A2BC.

Proof. By spiral similarity at A2, we deduce that 4A2C1B ∼ 4A2B1C, hence
A2B

A2C
=

C1B

B1C
=

AC3

AB3
.

A

B CA1

B1

C1

A3

B3

C3

A2

B2

C2

It follows that
4A2BC ∼ 4AC3B3

since we also have ]BA2C = ]BAC = ]C3AB3. (Configuration issues: we can check
that A2 lies on the same side of A as BC since B1 and C1 are constrained to lie on the
sides of the triangle. So we can deduce ∠C3AB3 = ∠BA2C.)

Thus ]AC3B3 = ]A2BC, completing the proof.

Similarly, ]BC3A3 = ]B2AC
The rest is angle chasing; we have

]A3C3B3 = ]A3C3A+ ]AC3B3

= ]A3C3B + ]AC3B3

= ]CAB2 + ]A2BC

= ]A2C2C + ]CC2B2

= ]A2C2B2.
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§10n Shortlist 2005 G5
Let 4ABC be an acute-angled triangle with AB 6= AC. Let H be the orthocenter of
triangle ABC, and let M be the midpoint of the side BC. Let D be a point on the side
AB and E a point on the side AC such that AE = AD and the points D, H, E are
on the same line. Prove that the line HM is perpendicular to the radical axis of the
circumcircles of 4ADE and 4ABC.
(Available online at https://aops.com/community/p519896.)

Let X be the second intersection of the circumcircles of ADE and ABC (in other
words, the Miquel point of complete quadrilateral DECB). We will in fact prove that
∠MXA = 90◦. This will establish the problem.

(Note that one could have “guessed” this was the case by reflecting H over M to A′,
and then realizing that the foot of the altitude from A to HM must in fact lie on the
circumcircle of ABC.)

A

B C

H

M

D

E

Y

Z

X

A′

Let Y and Z be the feet of the altitudes from B and C to AC and AB. It suffices
to prove that X lies on the circle with diameter AH. Since X is already the center of
a spiral similarity mapping BD to CE, we just need it to also map Z to Y . In other
words, we want

BD

ZD
=

CE

Y E
.

This can be done easily enough with explicit calculation. However, here is a more elegant
solution. Notice that

∠ZHB = 90◦ − ∠ZBH = ∠A.

On the other hand,

∠DHZ = 90◦ − ∠ADE = 90◦ −
(
90◦ − 1

2
∠A

)
=

1

2
∠A.

Therefore, HD bisects ∠ZHB. Similarly, EH bisects ∠Y HC. Finally, ZH · HC =
Y H ·HB since the points Z, Y , B, C are concyclic. Tying these all together, we have

BD

ZD
=

ZH

BH
=

Y H

CH
=

CE

Y E
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as required.

Remark. One can phrase this solution using the forgotten coaxiality lemma, see https:
//aops.com/community/p27873074.
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11 Solutions for Personal Favorites

How do you accidentally rob a bank??

RWBY Chibi, Season 3, Episode 1

§11a Canada 2000/4
Let ABCD be a convex quadrilateral with ∠CBD = 2∠ADB, ∠ABD = 2∠CDB and
AB = CB. Prove that AD = CD.

(Available online at https://aops.com/community/p445434.)

Let P = AD ∩ BC, Q = AB ∩ CD. Now 2∠ADB = ∠CBD = ∠BPD + ∠PDB,
meaning ∠BPD = ∠BDP and BP = BD. Similarly, BQ = BD.

B
PQ

D

AC

Now BP = BQ and BC = BA give 4QBC ∼= 4PBA; from here the solution follows
readily.

§11b EGMO 2012/1
Let ABC be a triangle with circumcenter O. The points D, E, F lie in the interiors of
the sides BC, CA, AB respectively, such that DE ⊥ CO and DF ⊥ BO. Let K be the
circumcenter of triangle AFE. Prove that the lines DK and BC are perpendicular.

(Available online at https://aops.com/community/p2658992.)

First, note ]EDF = 180◦ − ]BOC = 180◦ − 2A, so ]FDE = 2A.
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A

B C

O

D

F

E

K

Observe that ]FKE = 2A as well; hence KFDE is cyclic. Hence

]KDB = ]KDF + ]FDB

= ]KEF + (90◦ − ]DBO)

= (90◦ −A) + (90◦ − (90◦ −A))

= 90◦.

and the proof ends here.

§11c ELMO 2013/4
Triangle ABC is inscribed in circle ω. A circle through BC intersects segments AB and
AC at S and R, respectively. Lines BR and CS meet at L, and intersect ω at D and E,
respectively. The angle bisector of ∠BDE meets ER at K.

Prove that if BE = BR, then ∠ELK = 1
2∠BCD.

(Available online at https://aops.com/community/p3104305.)

First, we claim that BE = BR = BC. Indeed, construct a circle with radius BE = BR
centered at B, and notice that ∠ECR = 1

2∠EBR, implying that it lies on the circle.
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CB

E

A D

R

S

L

K

Now, CA bisects ∠ECD and DB bisects ∠EDC, so R is the incenter of 4CDE.
Then, K is the incenter of 4LED, so

∠ELK =
1

2
∠ELD =

1

2

(
ÊD + B̂C

2

)
=

1

2

’BED

2
=

1

2
∠BCD.

¶ Authorship comments. This problem was actually written backwards; the idea is a
phantom circle with center B and radius BE. This causes a certain isosceles triangle to
appear, and I wanted to see what I could do with it.

After some messing around I eventually found that making the cyclic quadrilateral
through BC created the right setup for the angles I wanted. (Originally the problem was
phrased in terms of the cyclic quadrilateral BCSR, which was then named ABCD.) I
started drawing lines to see where I could take the hidden isosceles triangle. Four hours
later, I got something sort of contrived which I showed Aaron Lin.

He liked it, but then pointed out that R was the incenter of 4DEC, something I
hadn’t noticed earlier. So I decided to make another incenter K and put in a random
angle condition. I was somewhat satisfied with the result.

§11d USAMTS 3/3/24
In quadrilateral ABCD, ∠DAB = ∠ABC = 110◦, ∠BCD = 35◦, ∠CDA = 105◦, and
AC bisects ∠DAB. Find ∠ABD.

The following diagram is not drawn to scale.
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A

B D

I

C

Let I denote the incenter of 4ABD. Then quadrilateral IBCD is cyclic since ∠DIB =
90◦ + 1

2∠DAB = 145◦. Hence we obtain ∠IBD = ∠ICD = 180◦ − (55◦ + 105◦) = 20◦

and so ∠ABD = 40◦.

§11e Sharygin 2013/21
Chords BC and DE of circle ω meet at point A. The line through D parallel to BC
meets ω again at F , and FA meets ω again at T . Let M = ET ∩BC and let N be the
reflection of A over M . Show that (DEN) passes through the midpoint of BC.

(Available online at https://aops.com/community/p3008129.)

Let K be the midpoint of BC, and let L be the reflection of A over K. Note that F is
the reflection of D over OK, so we find that DFLA is an isosceles trapezoid. Then,

∠MED = ∠TED = ∠TFD = ∠AFD = ∠ALD = ∠MLD.

Therefore, MELD is cyclic.

B

O

D

CK

E

F

A

T

MN L

Now, by Power of a Point, we see that

AD ·AE = AM ·AL
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= AM · 2AK

= 2AM ·AK

= NA ·AK

Therefore, DKEN is cyclic, as desired.

§11f ELMO 2012/1
In acute triangle ABC, let D, E, F denote the feet of the altitudes from A,B,C,
respectively, and let ω be the circumcircle of 4AEF . Let ω1 and ω2 be the circles
through D tangent to ω at E and F , respectively. Show that ω1 and ω2 meet at a point
P on line BC other than D.

(Available online at https://aops.com/community/p2728459.)

Let M denote the midpoint of BC.

A

B CD

E

F

MP

It’s known that ME and MF are tangents to ω (and hence to ω1, ω2), so M is the
radical center of ω, ω1, ω2. Now consider the radical axis of ω1 and ω2. It passes through
D and M , so it is line BC, and we are done.

(Thus the problem is still true if D is replaced by any point on BC.)

§11g Sharygin 2013/14
In trapezoid ABCD, ∠A = ∠D = 90◦. Let M and N be the midpoints of diagonals
AC and BD, respectively. Let Q = (ABN) ∩ BC and R = (CDM) ∩ BC. If K is the
midpoint of MN , show that KQ = KR.

Let AB = 2x, CD = 2y, and assume without loss of generality that x < y. Let L be
the midpoint of BC and denote BC = 2`. Let P be the midpoint of QR. Let T be the
foot of B on DC.
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A B

CD

MN

Q

R

K L

T

P

Since N is the midpoint of the hypotenuse of 4ABD, it follows that AN = BN . Since
MN ‖ AB, we see that MN is tangent to (ABN). Similarly, it is tangent to (BCM).

Noting that LM = 1
2AB via 4ABC, we obtain

LR · LC = LM2 =

(
1

2
AB

)2

= x2 =⇒ LR =
x2

`

Similarly, LQ = y2

` . Then,

PL =
LQ− LR

2
=

y2 − x2

2`
− and KL =

ML+NL

2
= x+ y.

But then, we find that
KL

PL
=

y2−x2

2`

x+ y
=

y − x

2`
=

TC

BC

Combined with ∠KLP = ∠BCT , we find that 4KLP ∼ 4BCT . Therefore, ∠KPL =
∠BTC = 90◦. But P is the midpoint of QR, so KQ = KR.

§11h Bulgaria 2012
Let ABC be a fixed triangle with circumcircle γ, and let P be any point in its interior.
Ray AP meets γ again at A1. We reflect A1 across BC to obtain a point A2. Define B1,
B2, C1 and C2 similarly. Prove that the circumcircle of A2B2C2 passes through a fixed
point independent of P .

We claim the fixed point is the orthocenter H. (One might guess this by considering
degenerate cases like P = H.) We present two solutions. (It is also possible to solve the
problem using complex numbers with ABC as the unit circle.)
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¶ First elementary solution (Evan Chen). Reflect A through the midpoint of BC to a
point A3. Define B3 and C3 similarly Notice that B, H, A2, C, A3 are concyclic, namely
on the reflection of the circumcircle through BC. Moreover, we have ∠HA2A3 = 90◦.

A

B C

H
P

A1

A2

A3

B3C3

Notice that
∠BAA1 =

1

2
‘BA1 =

1

2
‘BA2 = ∠BA3A2.

Hence we see, say by Trig Ceva, that the concurrence of lines AA1, BB1, CC1 also
implies the lines A3A2, B3B2, C3C2 are concurrent, say at Q. (Alternatively, if you don’t
like trig: under the similarity 4ABC ∼ 4A3B3C3 let P3 be the image of P . Then Q is
the isogonal conjugate of P3 with respect to 4A3B3C3.) Then A2 lies on a circle with
diameter HQ. So do B2 and C2 and the problem is solved.

¶ Second solution by tethered moving points. We fix A1 and A2, and let P vary
on line AA1. Then the maps B 7→ γ 7→ (BHC) by P 7→ B1 7→ B2 is projective, and
similarly P 7→ C1 7→ C2 is projective.

Now, we use the “second intersection of circles lemma” to conclude that the map

(HAC)→ (HAB) by B2 7→ (HA2B2) ∩ (HAB) 6= H

is a projective map (note that B2 is the only point which is moving here). We claim this
map coincides with the composed map B2 7→ C2, and for this it suffices to verify it for
three points:

• If P = A, then A = B1 = B2 = C1 = C2 and we are okay.

• If P = AA1 ∩ BC then B1 = B2 = C, C1 = C2 = B, and since BHA2C is an
isosceles trapezoid we are okay.

• If P = A1 then in fact A2B2C2 is the dilation of the Simson line from P with ratio
2, which is known to pass through the orthocenter.

§11i Sharygin 2013/15
Let ABC be a triangle.

(a) Triangles A1B1C1 and A2B2C2 are inscribed into triangle ABC so that C1A1 ⊥ BC,
A1B1 ⊥ CA, B1C1 ⊥ AB, B2A2 ⊥ BC, C2B2 ⊥ CA, A2C2 ⊥ AB. Prove that
these triangles are congruent.
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(b) Points A1, B1, C1, A2, B2, C2 lie inside a triangle ABC so that A1 is on segment
AB1, B1 is on segment BC1, C1 is on segment CA1, A2 is on segment AC2, B2

is on segment BA2, C2 is on segment CB2, and the angles BAA1, CBB2, ACC1,
CAA2, ABB2, BCC2 are equal. Prove that the triangles A1B1C1 and A2B2C2 are
congruent.

For part (a), observe that ∠C1A1B1 = 90◦ − (90◦ − ∠B1CA1) = ∠C. Similar calcula-
tions yield that 4ABC ∼ 4C1A1B1 ∼ 4B2C2A2.

A1

B1

C1

A2

C2

B2

A

B C

Now, notice that by the Pythagorean Theorem, we have

A1B
2
2 = B1B

2
2 +A1B

2
1 = A1A

2
2 +A2B

2
2

B1C
2
2 = C1C

2
2 +B1C

2
1 = B1B

2
2 +B2C

2
2

C1A
2
2 = A1A

2
2 + C1A

2
1 = C1C

2
2 + C2A

2
2

Summing, we obtain that

A1B
2
1 +B1C

2
1 + C1A

2
1 = A2B

2
2 +B2C

2
2 + C2A

2
2.

Since 4C1A1B1 ∼ 4B2C2A2, and the sums of the square of the sides are equal, it follows
that the two triangles must be equal as well.
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A

B C

C1

A1

B1

C2

A2

B2

O

MA

MBMC

For part (b), easy angle chasing gives

∠B2A2C2 = ∠ABA2 + ∠BAA2 = ∠BAC.

Similar calculations yield that 4A1B1C1 ∼ 4A2B2C2 ∼ 4ABC.
Now, let O be the circumcenter of 4ABC. Then O lies on the angle bisector of the

angle formed by lines B2C2 and B1C1; namely, the line through O perpendicular to BC.
(Note that ∠B1BC = C2CB.) Let da denote the command distance from O to lines
B2C2 and B1C1. Define db and dc analogously.

Then, since A1B1C1 ∼ A2B2C2, we observe that O must have the same barycentric
coordinates with respect to 4A1B1C1 and 4A2B2C2, namely

(da ·B1C1 : db · C1A1 : dc ·A1B1) = (da ·B2C2 : db · C2A2 : dc ·A2B2) .

So O corresponds to the same point in both triangles. The congruence of the pedal
triangles is then enough to deduce that 4A1B1C1

∼= 4A2B2C2.

§11j Sharygin 2013/18
Let AD be a bisector of 4ABC. Points M and N are the projections of B and C
respectively to AD. The circle with diameter MN intersects BC at points X and Y .
Prove that ∠BAX = ∠CAY .

Let B1 be the reflection of B over M (which is on AC) and let P∞ be the point at
infinity along BM ‖ CN .
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A

B

C

DM

B1

N

X1
X

Y

Evidently
−1 = (B1, B;M,P∞)

C
= (A,D;M,N).

But ∠MYN = ∠MXN = 90◦, so we find that M is the incenter of 4AXY ; hence
∠XAM = ∠Y AM , and hence ∠BAX = ∠CAY as desired.

§11k USA TST 2015/1
Let ABC be a scalene triangle with incenter I whose incircle is tangent to BC, CA, AB
at D, E, F , respectively. Denote by M the midpoint of BC and let P be a point in the
interior of 4ABC so that MD = MP and ∠PAB = ∠PAC. Let Q be a point on the
incircle such that ∠AQD = 90◦. Prove that either ∠PQE = 90◦ or ∠PQF = 90◦.

(Available online at https://aops.com/community/p3683109.)

We present two solutions.

¶ Official solution. Assume without loss of generality that AB < AC; we show
∠PQE = 90◦.
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A

B C

I

D

E

F

M

P

Q

N

T

S

First, we claim that D, P , E are collinear. Let N be the midpoint of AB. It is
well-known that the three lines MN , DE, AI are concurrent at a point (see for example
problem 6 of USAJMO 2014). Let P ′ be this intersection point, noting that P ′ actually
lies on segment DE. Then P ′ lies inside 4ABC and moreover

4DP ′M ∼ 4DEC

so MP ′ = MD. Hence P ′ = P , proving the claim.
Let S be the point diametrically opposite D on the incircle, which is also the second

intersection of AQ with the incircle. Let T = AQ ∩BC. Then T is the contact point of
the A-excircle; consequently,

MD = MP = MT

and we obtain a circle with diameter DT . Since ∠DQT = ∠DQS = 90◦ we have Q on
this circle as well.

As SD is tangent to the circle with diameter DT , we obtain

∠PQD = ∠SDP = ∠SDE = ∠SQE.

Since ∠DQS = 90◦, ∠PQE = 90◦ too.

¶ Solution using spiral similarity. We will ignore for now the point P . As before define
S, T and note AQST collinear, as well as DPQT cyclic on circle ω with diameter DT .

Let τ be the spiral similarity at Q sending ω to the incircle. We have τ(T ) = D,
τ(D) = S, τ(Q) = Q. Now

I = DD ∩QQ =⇒ τ(I) = SS ∩QQ

and hence we conclude τ(I) is the pole of ASQT with respect to the incircle, which lies
on line EF .

Then since AI ⊥ EF too, we deduce τ sends line AI to line EF , hence τ(P ) must be
either E or F as desired.
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¶ Authorship comments. Written April 2014. I found this problem while playing with
GeoGebra. Specifically, I started by drawing in the points A, B, C, I, D, M , T , common
points. I decided to add in the circle with diameter DT , because of the synergy it had
with the rest of the picture. After a while of playing around, I intersected ray AI with the
circle to get P , and was surprised to find that D, P , E were collinear, which I thought
was impossible since the setup should have been symmetric. On further reflection, I
realized it was because AI intersected the circle twice, and set about trying to prove this.
I noticed the relation ∠PQE = 90◦ in my attempts to prove the result, even though this
ended up being a corollary rather than a useful lemma.

§11l EGMO 2014/2
Let D and E be points in the interiors of sides AB and AC, respectively, of a triangle
ABC, such that DB = BC = CE. Let the lines CD and BE meet at F . Prove that the
incenter I of triangle ABC, the orthocenter H of triangle DEF and the midpoint M of
the arc BAC of the circumcircle of triangle ABC are collinear.
(Available online at https://aops.com/community/p3459750.)

¶ First solution (Cynthia Du). Let BI and CI meet the circumcircle again at MB,
MC . Observe that we have the spiral congruence

4MDB ∼ 4MEC

from ]MBD = ]MBA = ]MCA = ]MCE and BD = EC, BM = CM . That is, M
is the Miquel point of BDEC.

A

B C

I

D
E

MB

MC

M

T

S
F

H

Let T = ME ∩BI and S = MD ∩CI. First, since BI is the perpendicular bisector of
CD we have that

]DIT = ]CIT = ]CIB = 90◦ − 1

2
∠A = ]MCB = ]MED = ]TED

and so D, I, T , E is cyclic. Similarly S lies on this circle too. But ]SDE = ]EDM =
]MED = ]TED so in fact ST ‖ DE (isosceles trapezoid).

Then 4IST and 4HDE are homothetic, so IH, DS, and ET concur (at M).
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¶ Second solution (Evan Chen). Observe that we have the spiral congruence

4MDB ∼ 4MEC

from ]MBD = ]MBA = ]MCA = ]MCE and BD = EC, BM = CM . That is, M
is the Miquel point of BDEC.

A

B C

I

D
E

M

F
X Y

H

Let X and Y be the midpoints of BD and CE. Then MX = MY by our congruence.
Consider now the circles with diameters BD and CE. We now claim that H, I, M all

lie on the radical axis of these circles. Note that I is the orthocenter of 4BFC and H
is the orthocenter of 4DEF , so this follows from the so-called Steiner line of BCDE
(perpendicular to Gauss line XY ). For M , we observe MX2−XB2 = MY 2− Y C2 thus
completing the proof.

¶ Third solution (homothety, official solution). Extend DH and EH to meet BI and
CI at D1 and E1. Note DD1 ⊥ BE, CI ⊥ BE, so DD1 ‖ CI. Similarly EE1 ‖ BI. So
HE1ID1.
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A

B C

I

D E

F

H

D1E1

D2

E2

M

Angle chase to show that B, E1, F , C are cyclic – ∠DCE1 = ∠DCI is computable in
terms of ABC and

∠E1BF = ∠E1BE = ∠E1EB = ∠HEF = ∠HDF = ∠HDC = ∠DCE1 = ∠FCE1.

Thus B, D1, F , C are also cyclic. So B, D1, E1, C are cyclic.
Extend BI and CI to meet the circumcircle again at D2 and E2. Direct computation

gives that ME2ID2 is also a parallelogram. We also get E1D1 is parallel to E2D2 (both
are antiparallel to BC through ∠BIC). So we have homothetic paralellograms and that
finishes the problem.

§11m OMO 2013 W49
In 4ABC, CA = 1960

√
2, CB = 6720, and ∠C = 45◦. Let K, L, M lie on lines BC,

CA, and AB such that AK ⊥ BC, BL ⊥ CA, and AM = BM . Let N , O, P lie on KL,
BA, and BL such that AN = KN , BO = CO, and A lies on line NP .

If H is the orthocenter of 4MOP , compute HK2.

(Available online at https://aops.com/community/p2906138.)

Let M ′ be the midpoint of AC and let O′ be the circumcenter of 4ABC. Then
KMLM ′ is cyclic (nine-point circle), as is AMO′M ′ (since ∠MOA = ∠MM ′A = 45◦).
Also, ∠BO′A = 90◦, so O′ lies on the circle with diameter AB. Then N is the radical
center of these three circles; hence A, N , O′ are collinear.
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A

B C

M M ′N

O′

L

K

P

O

H

Now applying Brokard’s theorem to quadrilateral BLAO′, we find that M is the
orthocenter of the OPH ′, where H ′ = LA∩BO′. Hence H ′ is the orthocenter of 4MOP ,
whence H = H ′ = AC ∩BO′.

Now we know that
AH

HC
=

c2(a2 + b2 − c2)

a2(b2 + c2 − a2)

where the ratio is directed as in Menelaus’s theorem. Cancelling a factor of 2802 we can
compute:

AH

HC
=

c2(a2 + b2 − c2)

a2(b2 + c2 − a2)
=

338(576 + 98− 338)

576(98 + 338− 576)
= −169

120
.

Therefore,

AC

HC
= 1 +

AH

HC
= − 49

120

=⇒ |HC| = 120

49
· 1960

√
2 = 4800

√
2.

Now applying the law of cosines to 4KCH with ∠KCH = 135◦ yields

HK2 = KC2 + CH2 − 2KC · CH · cos 135◦

= 19602 +
(
4800

√
2
)2
− 2(1960)

(
4800

√
2
)(
− 1√

2

)
= 402

(
492 + 2 · 1202 + 2 · 49 · 120

)
= 1600 · 42961
= 68737600.

§11n USAMO 2007/6
Let ABC be an acute triangle with ω, S, and R being its incircle, circumcircle, and
circumradius, respectively. Circle ωA is tangent internally to S at A and tangent externally
to ω. Circle SA is tangent internally to S at A and tangent internally to ω.

Let PA and QA denote the centers of ωA and SA, respectively. Define points PB, QB,
PC , QC analogously. Prove that

8PAQA · PBQB · PCQC ≤ R3
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with equality if and only if triangle ABC is equilateral.

(Available online at https://aops.com/community/p825515.)

It turns out we can compute PAQA explicitly. Let us invert around A with radius
s− a (hence fixing the incircle) and then compose this with a reflection around the angle
bisector of ∠BAC. We denote the image of the composed map via

• 7→ •∗ 7→ •+.

We overlay this inversion with the original diagram.
Let PAQA meet ωA again at P and SA again at Q. Now observe that ω∗

A is a line
parallel to S∗; that is, it is perpendicular to PQ. Moreover, it is tangent to ω∗ = ω.

Now upon the reflection, we find that ω+ = ω∗ = ω, but line PQ gets mapped to
the altitude from A to BC, since PQ originally contained the circumcenter O (isogonal
to the orthocenter). But this means that ω∗

A is none other than the BC! Hence P+ is
actually the foot of the altitude from A onto BC.

By similar work, we find that Q+ is the point on AP+ such that P+Q+ = 2r.

A

B CP+

PA
P

QA

Q

I
P ∗

Q+

Now we can compute all the lengths directly. We have that

APA =
1

2
AP =

(s− a)2

2AP+
=

1

2
(s− a)2 · 1

ha

and
AQA =

1

2
AQ =

(s− a)2

2AQ+
=

1

2
(s− a)2 · 1

ha − 2r

where ha = 2K
a is the length of the A-altitude, with K the area of ABC as usual. Now it

follows that
PAQA =

1

2
(s− a)2

(
2r

ha(ha − 2r)

)
.

This can be simplified, as

ha − 2r =
2K

a
− 2K

s
= 2K · s− a

as
.

117

https://aops.com/community/p825515


Evan Chen《陳誼廷》 — 31 January 2024 Auto-Generated EGMO Solutions Treasury

Hence
PAQA =

a2rs(s− a)

4K2
=

a2(s− a)

4K
.

Hence, the problem is just asking us to show that

a2b2c2(s− a)(s− b)(s− c) ≤ 8(RK)3.

Using abc = 4RK and (s− a)(s− b)(s− c) = 1
sK

2 = rK, we find that this becomes

2(s− a)(s− b)(s− c) ≤ RK ⇐⇒ 2r ≤ R

which follows immediately from IO2 = R(R− 2r). Alternatively, one may rewrite this as
Schur’s Inequality in the form

abc ≥ (−a+ b+ c)(a− b+ c)(a+ b− c).

§11o Sharygin 2013/19
Let ABC be a triangle with circumcenter O and incenter I. The incircle is tangent to
sides BC, CA, AB at A0, B0, C0. Point L lies on BC so that ∠BAL = ∠CAL. The
perpendicular bisector of AL meets BI and CI at Q and P , respectively. Let C1 and
B1 denote the projections of B and C onto lines CI and BI. Let O1 and O2 denote the
circumcenters of triangles ABL and ACL.

Prove that the six lines BC, PC0, QB0, C1O1, B1O2, and OI are concurrent.

First, show that B0, B1, C0, C1 are collinear. This follows by angle chasing (it’s EGMO
Lemma 1.45). Moreover, we can check that P is the midpoint of the minor arc AL of the
circumcircle of triangle ACL. In particular, A, P , C, L are concyclic. Similarly, A, Q,
B, L are concyclic. We also know that P , O1, O2, Q are clearly collinear.

A

B C

O

I

L

O1

O2

A0

B0

C0
C1

B1

P

Q

K

MA

MB

MC
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By ∠LPI = ∠LAC we observe that LP ⊥ BI. Similarly LQ ⊥ CI. This is enough to
imply that

4A0B0C0 ∼ 4LPQ

are homothetic, with center K. Thus we obtain that BC, PC0, QB0 concur at at a point
K. Upon noticing that C1A0 = C1B0 and O1Q = O1L (as well as C1 ∈ B0C0, O1 ∈ PQ)
we find that C1 maps to O1 under the same homothety, meaning C1, O1, K are collinear.
Similarly, B1, O2, K are collinear.

It remains to show that I, O, K are collinear. Let MAMBMC denote the arc midpoints
on the circumcircle of 4ABC. Note that:

• We had already a positive homothety at K between 4A0B0C0 and 4PQL.

• There is evidently a homothety at I mapping 4PQL to 4McMaMb.

• There is by definition a homothety at X56 mapping (I) to (O).

So by Monge’s theorem, K, I, X56 are collinear, and X56 lies on line IO, as desired.

§11p USA TST 2015/6
Let ABC be a non-equilateral triangle and let Ma, Mb, Mc be the midpoints of the sides
BC, CA, AB, respectively. Let S be a point lying on the Euler line. Denote by X, Y , Z
the second intersections of MaS, MbS, McS with the nine-point circle. Prove that AX,
BY , CZ are concurrent.

(Available online at https://aops.com/community/p4628087.)

We assume now and forever that ABC is scalene since the problem follows by symmetry
in the isosceles case. We present four solutions.

¶ First solution by barycentric coordinates (Evan Chen). Let AX meet MbMc at D,
and let X reflected over MbMc’s midpoint be X ′. Let Y ′, Z ′, E, F be similarly defined.

X

Y

Z

Ma

Mb Mc

A

BC

S

D D′

E

E′
F

F ′

By Cevian Nest Theorem it suffices to prove that MaD, MbE, McF are concurrent.
Taking the isotomic conjugate and recalling that MaMbAMc is a parallelogram, we see
that it suffices to prove MaX

′, MbY
′, McZ

′ are concurrent.
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We now use barycentric coordinates on 4MaMbMc. Let

S =
(
a2SA + t : b2SB + t : c2SC + t

)
(possibly t =∞ if S is the centroid). Let v = b2SB + t, w = c2SC + t. Hence

X =
(
−a2vw : (b2w + c2v)v : (b2w + c2v)w

)
.

Consequently,

X ′ =
(
a2vw : −a2vw + (b2w + c2v)w : −a2vw + (b2w + c2v)v

)
We can compute

b2w + c2v = (bc)2(SB + SC) + (b2 + c2)t = (abc)2 + (b2 + c2)t.

Thus

−a2v + b2w + c2v = (b2 + c2)t+ (abc)2 − (ab)2SB − a2t = SA((ab)
2 + t).

Finally

X ′ =
(
a2vw : SA(c

2SC + t)
(
(ab)2 + 2t

)
: SA(b

2SB + t)
(
(ac)2 + 2t

))
and from this it’s evident that AX ′, BY ′, CZ ′ are concurrent.

¶ Second solution by moving points (Anant Mudgal). Let Ha, Hb, Hc be feet of
altitudes, and let γ denote the nine-point circle. The main claim is that:

Claim — Lines XHa, Y Hb, ZHc are concurrent,

Proof. In fact, we claim that the concurrence point lies on the Euler line `. This gives us
a way to apply the moving points method: fix triangle ABC and animate S ∈ `; then
the map

`→ γ → `

S 7→ X 7→ Sa := ` ∩HaX

is projective, because it consists of two perspectivities. So we want the analogous maps
S 7→ Sb, S 7→ Sc to coincide. For this it suffices to check three positions of S; since you’re
such a good customer here are four.

• If S is the orthocenter of 4MaMbMc (equivalently the circumcenter of 4ABC)
then Sa coincides with the circumcenter of MaMbMc (equivalently the nine-point
center of 4ABC). By symmetry Sb and Sc are too.

• If S is the circumcenter of4MaMbMc (equivalently the nine-point center of4ABC)
then Sa coincides with the de Longchamps point of 4MaMbMc (equivalently
orthocenter of 4ABC). By symmetry Sb and Sc are too.

• If S is either of the intersections of the Euler line with γ, then S = Sa = Sb = Sc

(as S = X = Y = Z).

This concludes the proof.
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X

Y

Z

Ma

Mb Mc

A

BC

S

Ha

Hb

Hc

We now use Trig Ceva to carry over the concurrence. By sine law,
sin∠McAX

sin∠AMcX
=

McX

AX

and a similar relation for Mb gives that
sin∠McAX

sin∠MbAX
=

sin∠AMcX

sin∠AMbX
· McX

MbX
=

sin∠AMcX

sin∠AMbX
· sin∠XMaMc

sin∠XMaMb
.

Thus multiplying cyclically gives∏
cyc

sin∠McAX

sin∠MbAX
=
∏
cyc

sin∠AMcX

sin∠AMbX

∏
cyc

sin∠XMaMc

sin∠XMaMb
.

The latter product on the right-hand side equals 1 by Trig Ceva on 4MaMbMc with
cevians MaX, MbY , McZ. The former product also equals 1 by Trig Ceva for the
concurrence in the previous claim (and the fact that ∠AMcX = ∠HcHaX). Hence the
left-hand side equals 1, implying the result.

¶ Third solution by moving points (Gopal Goel). In this solution, we will instead use
barycentric coordinates with resect to 4ABC to bound the degrees suitably, and then
verify for seven distinct choices of S.

We let R denote the radius of 4ABC, and N the nine-point center.
First, imagine solving for X in the following way. Suppose ~X = (1 − ta) ~Ma + ta~S.

Then, using the dot product (with |~v|2 = ~v · ~v in general)
1

4
R2 =

∣∣∣ ~X − ~N
∣∣∣2

=
∣∣∣ta(~S − ~Ma) + ~Ma − ~N

∣∣∣2
=
∣∣∣ta(~S − ~Ma)

∣∣∣2 + 2ta

(
~S − ~Ma

)
·
(
~Ma − ~N

)
+
∣∣∣ ~Ma − ~N

∣∣∣2
= t2a

∣∣∣(~S − ~Ma)
∣∣∣2 + 2ta

(
~S − ~Ma

)
·
(
~Ma − ~N

)
+

1

4
R2

Since ta 6= 0 we may solve to obtain

ta = −2( ~Ma − ~N) · (~S − ~Ma)∣∣∣~S − ~Ma

∣∣∣2 .
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Now imagine S varies along the Euler line, meaning there should exist linear functions
α, β, γ : R→ R such that

S = (α(s), β(s), γ(s)) s ∈ R

with α(s) + β(s) + γ(s) = 1. Thus ta = fa
ga

= fa(s)
ga(s)

is the quotient of a linear function
fa(s) and a quadratic function ga(s).

So we may write:

X = (1− ta)

(
0,

1

2
,
1

2

)
+ ta (α, β, γ)

=

(
taα,

1

2
(1− ta) + taβ,

1

2
(1− ta) + taγ

)
= (2faα : ga − fa + 2faβ : ga − fa + 2faγ) .

Thus the coordinates of X are quadratic polynomials in s when written in this way.
In a similar way, the coordinates of Y and Z should be quadratic polynomials in s.

The Ceva concurrence condition∏
cyc

ga − fa + 2faβ

ga − fa + 2faγ
= 1

is thus a polynomial in s of degree at most six. Our goal is to verify it is identically zero,
thus it suffices to check seven positions of S.

• If S is the circumcenter of4MaMbMc (equivalently the nine-point center of4ABC)
then AX, BY , CZ are altitudes of 4ABC.

• If S is the centroid of 4MaMbMc (equivalently the centroid of 4ABC), then AX,
BY , CZ are medians of 4ABC.

• If S is either of the intersections of the Euler line with γ, then S = X = Y = Z
and all cevians concur at S.

• If S lies on the MaMb, then Y = Ma, X = Mc, and thus AX ∩BY = C, which is
of course concurrent with CZ (regardless of Z). Similarly if S lies on the other
sides of 4MaMbMc.

Thus we are also done.

¶ Fourth solution using Pascal (official one). We give a different proof of the claim
that XHa, Y Hb, ZHc are concurrent (and then proceed as in the end of the second
solution).

Let H denote the orthocenter, N the nine-point center, and moreover let Na, Nb, Nc

denote the midpoints of AH, BH, CH, which also lie on the nine-point circle (and are
the antipodes of Ma, Mb, Mc).

• By Pascal’s theorem on MbNbHbMcNcHc, the point P = McHb ∩MbHc is collinear
with N = MbNb ∩McNc, and H = NbHb ∩NcHc. So P lies on the Euler line.

• By Pascal’s theorem on MbY HbMcZHc, the point Y Hb ∩ ZHc is collinear with
S = MbY ∩McZ and P = MbHc ∩McHb. Hence Y Hb and ZHc meet on the Euler
line, as needed.
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§11q Iran TST 2009/9
Let ABC be a triangle with incenter I and intouch triangle DEF . Let M be the foot
of the perpendicular from D to EF and let P be the midpoint of DM . If H is the
orthocenter of triangle BIC, prove that PH bisects EF .

(Available online at https://aops.com/community/p1499412.)

Let N be the midpoint of EF , and set B1 = EF ∩HC, C1 = EF ∩HB. Focus on
triangle DB1C1.

A

B C

I

D

E

F

H

B1

C1

N
M

P

It’s known that 4DB1C1 is the orthic triangle of 4HBC (by EGMO Lemma 1.45).
Moreover, N is the tangency point of its incircle with B1C1. In addition, H is the
D-excenter. Finally, because of altitude midpoints, points P , N , and H are collinear.

§11r IMO 2011/6
Let ABC be an acute triangle with circumcircle Γ. Let ` be a tangent line to Γ, and let
`a, `b, `c be the lines obtained by reflecting ` in the lines BC, CA, and AB, respectively.
Show that the circumcircle of the triangle determined by the lines `a, `b, and `c is tangent
to the circle Γ.

(Available online at https://aops.com/community/p2365045.)

This is a hard problem with many beautiful solutions. The following solution is not
very beautiful but not too hard to find during an olympiad, as the only major insight it
requires is the construction of A2, B2, and C2.
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A

B
C

P

A1

B1

C1

A2

B2

C2

T

We apply complex numbers with ω the unit circle and p = 1. Let A1 = `B ∩ `C , and
let a2 = a2 (in other words, A2 is the reflection of P across the diameter of ω through
A). Define the points B1, C1, B2, C2 similarly.

We claim that A1A2, B1B2, C1C2 concur at a point on Γ.
We begin by finding A1. If we reflect the points 1 + i and 1− i over AB, then we get

two points Z1, Z2 with

z1 = a+ b− ab(1− i) = a+ b− ab+ abi

z2 = a+ b− ab(1 + i) = a+ b− ab− abi.

Therefore,

z1 − z2 = 2abi

z1z2 − z2z1 = −2i
(
a+ b+

1

a
+

1

b
− 2

)
.

Now `C is the line Z1Z2, so with the analogous equation `B we obtain:

a1 =
−2i

(
a+ b+ 1

a + 1
b − 2

)
(2aci) + 2i

(
a+ c+ 1

a + 1
c − 2

)
(2abi)(

− 2
ab i
)
(2aci)−

(
− 2

ac i
)
(2abi)

=
[c− b] a2 +

[
c
b −

b
c − 2c+ 2b

]
a+ (c− b)

c
b −

b
c

= a+
(c− b)

[
a2 − 2a+ 1

]
(c− b)(c+ b)/bc

= a+
bc

b+ c
(a− 1)2.

Then the second intersection of A1A2 with ω is given by

a1 − a2
1− a2a1

=
a+ bc

b+c(a− 1)2 − a2

1− a− a2 · (1−1/a)2

b+c
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=
a+ bc

b+c(1− a)

1− 1
b+c(1− a)

=
ab+ bc+ ca− abc

a+ b+ c− 1
.

Thus, the claim is proved.
Finally, it suffices to show A1B1 ‖ A2B2. One can also do this with complex numbers;

it amounts to showing a2 − b2, a− b, i (corresponding to A2B2, A1B1, PP ) have their
arguments an arithmetic progression, equivalently

(a− b)2

i(a2 − b2)
∈ R ⇐⇒ (a− b)2

i(a2 − b2)
=

(
1
a −

1
b

)2
1
i

(
1
a2
− 1

b2

)
which is obvious.

Remark. One can use directed angle chasing for this last part too. Let BC meet ` at K
and B2C2 meet ` at L. Evidently

−]B2LP = ]LPB2 + ]PB2L

= 2]KPB + ]PB2C2

= 2]KPB + 2]PBC

= −2]PKB

= ]PKB1

as required.

§11s Taiwan TST 2014/3J/3
Let ABC be a triangle with circumcircle Γ and let M be an arbitrary point on Γ. Suppose
the tangents from M to the incircle of ABC intersect BC at two distinct points X1 and
X2. Prove that the circumcircle of triangle MX1X2 passes through the tangency point
of the A-mixtilinear incircle with Γ.

(Available online at https://aops.com/community/p3551881.)

We know that the line TI passes through the midpoint of arc B̂C containing A; call
this point L.
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A

B C

M

L

D

E

F

T

A∗

B∗

C∗

M∗

L∗

T ∗

IH
K1

K2

X1X2

X∗
1

X∗
2

D′

H ′

MB

MC

TB

TC

Set DEF as the intouch triangle of ABC. Let K1 and K2 be the contact points of
the tangents from M (so that X1 lies on MK1 and X2 lies on MK2) and perform an
inversion around the incircle. As usual we denote the inverse with a star. Now A∗, B∗,
C∗ are respectively the midpoints of EF , FD, DE, and as usual Γ∗ = (A∗B∗C∗) is the
nine-point circle of 4DEF .

Clearly M∗ is an arbitrary point on Γ∗; moreover, it is the midpoint of K1K2. Now
let us determine the location of T ∗. Now we claim T ∗ is the point diametrically opposite
A∗ on Γ∗. We see that L∗ is some point also on Γ∗. Moreover,

]IL∗A∗ = −]IAL = 90◦.

But because L, I, T are collinear it follows that L∗, I∗, T ∗ are collinear, whence

]TL∗A∗ = ]I∗L∗A∗ = 90◦

as desired. That means it is also the midpoint of DH, where H is the orthocenter of
triangle DEF .

It is now time to prove that M∗, X∗
1 , X∗

2 , T ∗ are concyclic. Dilating by a factor of 2
at D, it is equivalent to prove that D′, K1, K2, and H are concyclic, where D′ is the
reflection of D over M∗. Reflecting around M∗ it is equivalent to prove that D, K2, K1,
and H ′ are concyclic.
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But the circumcircle of D, K2 and K1 is just Γ∗ itself. Moreover our usual homothety
between the nine-point circle Γ∗ and the incircle implies that H ′ lies on Γ∗ as well. So D,
K2, K1, H ′ are concyclic on Γ∗. Thus M , X1, X2, and T are concyclic, which is what
we wanted to show.

§11t Taiwan Quiz 2015/3J/6
In scalene triangle ABC with incenter I, the incircle is tangent to sides CA and AB
at points E and F . The tangents to the circumcircle of 4AEF at E and F meet at S.
Lines EF and BC intersect at T . Prove that the circle with diameter ST is orthogonal
to the nine-point circle of triangle BIC.

(Available online at https://aops.com/community/p5087419.)

Let D be the foot from I to BC. Let X, Y denote the feet from B, C to CI and BI.
We can show that BIFX, CIEY are cyclic, so that X and Y lie on EF . Now let M
be the midpoint of BC, and ω the circumcircle of DMXY . The problem reduces to
showing that S lies on the polar of T to ω.

A

B C

I

MD

E

F

T

X

Y

K

S

N

L

Let K = AM ∩ EF . It’s well known (say by SL 2005 G6) that points K, I, D are
collinear. Let N be the midpoint of EF , and L = KS ∩BC. From

−1 = (AI;NS)
K
= (TL;MD)

and
−1 = (TD;BC)

I
= (TK;Y X)

we find that T = MD ∩ Y X is the pole of line KL with respect to ω, completing the
proof.

Remark. August Chen notes that it’s possible to prove (TK;XY ) = −1 by constructing
the orthocenter H of 4BIC, and using the Ceva/Menelaus lemma on 4HXY .
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¶ Authorship comments. This problem was constructed backwards. The points X,
Y , K were added because I knew already that they led to the nice configuration in
question. I then tried to see if I could construct any nice harmonic quadrilaterals. I
already had (TK;XY ), so I took the other harmonic conjugate and thus arrived at L.
The construction of S followed after that; it was the result of projecting through K
onto the angle bisector. Thus arrived the problem, which had an astonishingly short
formulation.
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A Generating Code

§A.1 Database dump script (Python)

1 import sys
2 import yaml
3 from von import api
4 from typing import Any
5
6 with open('data.yaml') as f:
7 data: list[dict[str, Any]] = yaml.load(f,

Loader=yaml.SafeLoader)
8
9 print(r'''\documentclass[11pt]{scrreprt}

10 \usepackage[sexy]{evan}
11 \renewcommand{\thesection}{\thechapter\alph{section}}
12 \usepackage{epigraph}
13 \renewcommand{\epigraphsize}{\scriptsize}
14 \renewcommand{\epigraphwidth}{60ex}
15
16 \begin{document}
17 \title{Auto-Generated EGMO Solutions Treasury}
18 \maketitle
19 \tableofcontents
20 ''')
21
22 for d in data:
23 problems: list[str] = d['problems']
24 chapter_name: str = d['name']
25 print(r'\chapter{Solutions for %s}' % chapter_name)
26 print(r'\epigraph{%s}{%s}' % (d['quote'],

d['quote_source']))
27
28 for key in problems:
29 if not api.has(key):
30 print("MISSING", key, 'from chapter', d['chapter'],

file=sys.stderr)
31 else:
32 print(r'\section{%s}' % key)
33 print(api.get_statement(key))
34 if (url := api.get(key).url) is not None:
35 print(
36 r'\par\medskip\noindent\textsf{\footnotesize

(Available online at'
37 '\n'
38 r'\url{' + url + '}.)}')
39
40 print('\n')
41 print(r'\hrulebar')
42 print('\n')
43 print(api.get_solution(key))
44 print('\n')

129



Evan Chen《陳誼廷》 — 31 January 2024 Auto-Generated EGMO Solutions Treasury

45
46 print(r'''\appendix
47 \renewcommand{\thesection}{\thechapter.\arabic{section}}
48 \chapter{Generating Code}
49 \section{Database dump script (Python)}
50 \lstinputlisting[language=Python]{compile.py}
51 \newpage
52 \section{Input data}
53 \lstinputlisting{data.yaml}
54
55 \end{document}''')
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§A.2 Input data

1 - chapter: 1
2 name: Angle Chasing
3 quote: |
4 I won't go easy on you, and I hope you won't go easy on me,

either.
5 quote_source: |
6 Serral to Bunny before their semifinals match at
7 \emph{DreamHack Starcraft 2 Masters} Atlanta 2022
8 problems:
9 - BAMO 1999/2

10 - CGMO 2012/5
11 - Canada 1991/3
12 - Russia 1996/10.1
13 - JMO 2011/5
14 - Canada 1997/4
15 - IMO 2006/1
16 - USAMO 2010/1
17 - IMO 2013/4
18 - IMO 1985/1
19
20 - chapter: 2
21 name: Circles
22 quote: |������������
23 \\��������������
24
25
26 \bigskip
27 \emph{I've waited here every day \\
28 But I ’dont know if I can tomorrow as well}
29 quote_source: |
30 \emph{Lullaby}, by Dreamcatcher
31 problems:
32 - USAMO 1990/5
33 - BAMO 2012/4
34 - JMO 2012/1
35 - IMO 2008/1
36 - USAMO 1997/2
37 - IMO 1995/1
38 - USAMO 1998/2
39 - IMO 2000/1
40 - Canada 1990/3
41 - IMO 2009/2
42 - Canada 2007/5
43 - Iran TST 2011/1
44
45 - chapter: 3
46 name: Lengths and Ratios
47 quote: |
48 I don't know what's weirder --- that you're fighting a

stuffed animal ,
49 or that you seem to be losing.
50 quote_source: |
51 Susie Derkins , in \emph{Calvin and Hobbes}
52 problems:
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53 - Shortlist 2006 G3
54 - BAMO 2013/3
55 - USAMO 2003/4
56 - USAMO 1993/2
57 - EGMO 2013/1
58 - APMO 2004/2
59 - Shortlist 2001 G1
60 - TSTST 2011/4
61 - USAMO 2015/2
62
63 - chapter: 4
64 name: Assorted Configurations
65 quote: |
66 We should switch from 5 answer choices to 6 answer choices
67 so we can just bubble a lot of F's to express our feelings.
68 quote_source: |
69 Evan's reaction to the AMC edVistas website
70 problems:
71 - Hong Kong 1998
72 - Shortlist 2003 G2
73 - USAMO 1988/4
74 - USAMO 1995/3
75 - USA TST 2014/1
76 - USA TST 2011/1
77 - ELMO SL 2013 G7
78 - USAMO 2011/5
79 - Japan 2009
80 - Vietnam TST 2003/2
81 - Sharygin 2013/16
82 - APMO 2012/4
83 - Shortlist 2002 G7
84
85 - chapter: 5
86 name: Computational Geometry
87 quote: |
88 We both know we don't want to be here, so let's get this

over with.
89 quote_source: |
90 Xiaoyu He, during a MOP 2013 test review
91 problems:
92 - APMO 2013/1
93 - EGMO 2013/1
94 - USAMO 2010/4
95 - Iran 1999
96 - CGMO 2002/4
97 - IMO 2007/4
98 - JMO 2013/5
99 - CGMO 2007/5

100 - Shortlist 2011 G1
101 - IMO 2001/1
102 - IMO 2001/5
103 - IMO 2001/6
104
105 - chapter: 6
106 name: Complex Numbers
107 quote: |
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108 The real fun of living wisely is that you get to be smug
about it.

109 quote_source: |
110 Hobbes , in \emph{Calvin and Hobbes}
111 problems:
112 - China TST 2011/2/1
113 - USAMO 2015/2
114 - China TST 2006/4/1
115 - USA TST 2014/5
116 - OMO 2013 F26
117 - IMO 2009/2
118 - APMO 2010/4
119 - Shortlist 2006 G9
120 - MOP 2006/4/1
121 - Shortlist 1998 G6
122 - ELMO SL 2013 G7
123
124 - chapter: 7
125 name: Barycentric Coordinates
126 quote: |
127 I don't care if you're a devil in disguise!
128 I love you all the same!
129 quote_source: |
130 Misa Amane , in \emph{Death Note: The Last Name}
131 problems:
132 - IMO 2014/4
133 - EGMO 2013/1
134 - ELMO SL 2013 G3
135 - IMO 2012/1
136 - Shortlist 2001 G1
137 - USA TST 2008/7
138 - USAMO 2001/2
139 - TSTST 2012/7
140 - December TST 2012/1
141 - Sharygin 2013/20
142 - APMO 2013/5
143 - USAMO 2005/3
144 - Shortlist 2011 G2
145 - Romania TST 2010/6/2
146 - ELMO 2012/5
147 - USA TST 2004/4
148 - TSTST 2012/2
149 - IMO 2004/5
150 - Shortlist 2006 G4
151
152 - chapter: 8
153 name: Inversion
154 quote: |
155 Humans are like high templar.
156 They're fragile , weak, and cause storms when they're mad.
157 And they love giving feedback to others
158 despite being unable to receive feedback themselves.
159 quote_source: ""
160 problems:
161 - BAMO 2011/4
162 - Iran 1996
163 - Shortlist 2003 G4
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164 - NIMO 2014
165 - EGMO 2013/5
166 - Russia 2009/10.2
167 - Shortlist 1997/9
168 - IMO 1993/2
169 - IMO 1996/2
170 - IMO 2015/3
171 - ELMO Shortlist 2013 # FGOB
172
173 - chapter: 9
174 name: Projective Geometry
175 quote: |
176 I don't think Jane Street would appreciate
177 all their thousands of dollars going to fruit snacks.
178 quote_source: |
179 Debbie Lee, at MOP 2022
180 problems:
181 - TSTST 2012/4
182 - Singapore TST
183 - Canada 1994/5
184 - Bulgaria 2001
185 - ELMO SL 2012 G3
186 - IMO 2014/4
187 - Shortlist 2004 G8
188 - Sharygin 2013/16
189 - Shortlist 2004 G2
190 - January TST 2013/2
191 - Brazil 2011/5
192 - ELMO SL 2013 G3
193 - APMO 2008/3
194 - ELMO SL 2014 G2 # AC / BD / GH
195 - ELMO Shortlist 2014 # GI, HJ, B-symmedian
196 - Shortlist 2005 G6
197
198 - chapter: 10
199 name: Complete Quadrilaterals
200 quote: |������������
201 \\����������������
202
203
204 \emph{Look at the sky, ’Ill leave a piece containing my

heart there \\
205 So, call me when the time comes}
206 quote_source: |
207 \emph{PLEASE PLEASE}, by EVERGLOW
208 problems:
209 - NIMO 2014
210 - USAMO 2013/1
211 - Shortlist 1995 G8
212 - USA TST 2007/1
213 - USAMO 2013/6
214 - USA TST 2007/5
215 - IMO 2005/5
216 - USAMO 2006/6
217 - Balkan 2009/2
218 - TSTST 2012/7
219 - TSTST 2012/2
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220 - USA TST 2009/2
221 - Shortlist 2009 G4
222 - Shortlist 2006 G9
223 - Shortlist 2005 G5
224
225 - chapter: 11
226 name: Personal Favorites
227 quote: |
228 How do you \emph{accidentally} rob a bank??
229 quote_source: |
230 \emph{RWBY Chibi}, Season 3, Episode 1
231 problems:
232 - Canada 2000/4
233 - EGMO 2012/1
234 - ELMO 2013/4
235 - Sharygin 2012
236 - USAMTS 3/3/24
237 - MOP 2012
238 - Sharygin 2013/21
239 - ELMO 2012/1
240 - Sharygin 2013/14
241 - Bulgaria 2012
242 - Sharygin 2013/15
243 - Sharygin 2013/18
244 - USA TST 2015/1
245 - EGMO 2014/2
246 - OMO 2013 W49
247 - USAMO 2007/6
248 - Sharygin 2013/19
249 - USA TST 2015/6
250 - Iran TST 2009/9
251 - IMO 2011/6
252 - Taiwan TST 2014/3J/3
253 - Taiwan Quiz 2015/3J/6
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