Welcome to 18.02 Recitation Mass Tech

Evan Chen

4 September 2024

*ロ > *日 > *日 > *日 > *日 > *

About me

- Evan Chen (evan@evanchen.cc), I'm a 5th-year grad student.
- Please call me Evan and not any of this Mr. Chen nonsense
- My recitation is MW 9:05-9:55am in 2-135 (right now).
- My office hours is 10am in some room TBD.

4 3 5 4 3 5

Places to find things

- Canvas website has all the important course stuff
 - Piazza
 - Gradescope
- MIT-X has part of your problem sets
- https://web.evanchen.cc/1802.html will have any optional supplemental stuff I make (like these slides), it's not important

Dates

- Your first PSet is due Tue September 10. (It's shorter.)
- Midterms are Fri Sept 27, Tue Oct 22, Fri Nov 15.
 - Put these in your calendar right now, you do not want to miss them.
- Final TBD: don't book plane tickets home until date published.

< ロ > < 同 > < 三 > < 三 >

What to expect

Book

- First 7-ish lectures will actually be linear algebra from Poonen's notes. No calculus at all!
- Afterwards, switch to Edwards and Penney for actual calculus.
 - but tbh Poonen probably still better than E&P.

Class

- Lecture: Maulik teaches.
- Recitation: Evan makes you do a worksheet.
 - (Today is unusual; future recitations won't have slides like this.)
 - Worksheets have about 4 problems but we won't cover them all.
 - Solutions posted later.
- Office hours: ask anything.
 - You can go to anyone's office hours.

Advice you didn't ask for

イロン イヨン イヨン

Intro to vectors

Type safety (see printout)

Any time you see a new operation, make sure you know what types of objects are involved.

Nouns you'll see this week

Term	Example	Notation	Container
Real num/scalar	$\frac{2}{3}$, $\sqrt{\pi}$	Lowercase (r , λ ,)	\mathbb{R}
Vector	$\begin{bmatrix} 3 \\ 4 \end{bmatrix} = \langle 3, 4 \rangle$	\vec{v} , v , \overrightarrow{PQ} ,	\mathbb{R}^{n}
		$\mathbf{e}_1=\mathbf{i}=\vec{\imath}=\langle 1,0,0\rangle$	
		$\mathbf{e}_2 = \mathbf{j} = \vec{j} = \langle 0, 1, 0 \rangle$	
		$\mathbf{e}_3 = \mathbf{k} = \vec{k} = \langle 0, 0, 1 \rangle$	
Matrix	$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$	Uppercase (A, M,)	idk

Intro to vectors (cont'd)

For linear algebra, most of our concepts will have both an algebraic definition (in coordinates) but *also* a corresponding geometric picture. You need to be able to translate between the two freely.

Fill in this table				
	Notation	Type sig	Def (coords)	Pic
Vector		(noun)		
Len/mag				
Unit vector		(adj)		
Scale vector				
Add vectors				
Subtract vectors				
Dot prod. (tmrw)				

イロン イヨン イヨン