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1 Solution
We are tasked with expressing the triple integral∫∫∫

R
f dV

as iterated integrals in both spherical and cylindrical coordinates, where R
is the region bounded below by the cone z =

√
x2 + y2 and above by the

upper hemisphere of radius 2, defined by x2 + y2 + z2 ≤ 4 with z ≥ 0.
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1.1 Understanding the Region R

1.1.1 Description of R

- **Lower Bound:** The cone z =
√
x2 + y2 can be rewritten as z2 = x2+y2,

representing a double-napped cone. Since z ≥ 0, we consider only the upper
nappe of the cone. - **Upper Bound:** The upper hemisphere x2+y2+z2 =
4 with z ≥ 0. - **Intersection:** To find the limits of integration, determine
where the cone and the hemisphere intersect.

1.1.2 Finding the Intersection of the Cone and Hemisphere

Set the equations equal to find the boundary of R:

z2 = x2 + y2 and x2 + y2 + z2 = 4

Substitute z2 = x2 + y2 into the hemisphere equation:

x2 + y2 + (x2 + y2) = 42(x2 + y2) = 4x2 + y2 = 2

Thus, the cone and the hemisphere intersect along the circle x2 + y2 = 2
and z =

√
2.
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1.2 Part (a): Expressing the Integral in Spherical Coordi-
nates

1.2.1 Spherical Coordinates Overview

Spherical coordinates (ρ, θ, φ) are related to Cartesian coordinates by:

x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ

where:

• ρ ≥ 0 is the radial distance,

• 0 ≤ θ < 2π is the azimuthal angle,

• 0 ≤ φ ≤ π is the polar angle.

The volume element in spherical coordinates is:

dV = ρ2 sinφdρ dφ dθ

1.2.2 Determining the Limits of Integration

- **Radial Distance (ρ):** The hemisphere has a radius of 2, so 0 ≤ ρ ≤ 2.
- **Azimuthal Angle (θ):** Full rotation around the z-axis, so 0 ≤ θ < 2π.
- **Polar Angle (φ):** Determined by the cone z =

√
x2 + y2.

The cone equation in spherical coordinates:

ρ cosφ = ρ sinφ cosφ = sinφ tanφ = 1φ =
π

4

Therefore, φ ranges from 0 to π
4 .

1.2.3 Setting Up the Integral

The triple integral in spherical coordinates becomes:∫∫∫
R
f dV =

∫ 2π

0

∫ π
4

0

∫ 2

0
f(ρ, θ, φ)ρ2 sinφdρ dφ dθ

where f(ρ, θ, φ) is the function expressed in spherical coordinates.
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1.3 Part (b): Expressing the Integral in Cylindrical Coordi-
nates

1.3.1 Cylindrical Coordinates Overview

Cylindrical coordinates (r, θ, z) are related to Cartesian coordinates by:

x = r cos θ, y = r sin θ, z = z

where:

• r ≥ 0 is the radial distance,

• 0 ≤ θ < 2π is the azimuthal angle,

• z is the height.

The volume element in cylindrical coordinates is:

dV = r dz dr dθ

1.3.2 Determining the Limits of Integration

- **Radial Distance (r):** The region is bounded by the cone and the hemi-
sphere. At any height z, the radial distance r satisfies:

From the cone z = r, and from the hemisphere r2 + z2 = 4, so r =√
4− z2.
- **Height (z):** The cone starts at z = 0 and goes up to the intersection

point z =
√
2.

- **Azimuthal Angle (θ):** Full rotation around the z-axis, so 0 ≤ θ <
2π.

Thus, the limits are:

0 ≤ θ < 2π0 ≤ z ≤
√
2z ≤ r ≤

√
4− z2

1.3.3 Setting Up the Integral

The triple integral in cylindrical coordinates becomes:∫∫∫
R
f dV =

∫ 2π

0

∫ √
2

0

∫ √
4−z2

z
f(r, θ, z) r dr dz dθ

where f(r, θ, z) is the function expressed in cylindrical coordinates.

6



1.4 Conclusion

The triple integral
∫∫∫

R f dV over the region R can be expressed as iterated
integrals in both spherical and cylindrical coordinates as follows:

(a) Spherical Coordinates:∫∫∫
R
f dV =

∫ 2π

0

∫ π
4

0

∫ 2

0
f(ρ, θ, φ)ρ2 sinφdρ dφ dθ

(b) Cylindrical Coordinates:∫∫∫
R
f dV =

∫ 2π

0

∫ √
2

0

∫ √
4−z2

z
f(r, θ, z) r dr dz dθ

These iterated integrals allow for the evaluation of the triple integral over
the specified region R using the most convenient coordinate system based
on the symmetry of the region and the function f .
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2 Center of Mass of a Hemisphere
We are tasked with finding the center of mass of a solid hemisphere of radius
a using spherical coordinates. The hemisphere is assumed to have a uniform
density δ = 1.
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2.1 Understanding the Problem

Consider the upper hemisphere defined by:

z ≥ 0 and x2 + y2 + z2 ≤ a2.

Due to the symmetry of the hemisphere about the z-axis, the coordinates
of the center of mass will satisfy:

x = 0, y = 0.

Thus, we only need to determine the z-coordinate of the center of mass, z.
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2.2 Formula for Center of Mass

The z-coordinate of the center of mass for a solid region R with density
δ = 1 is given by:

z =
1

M

∫∫∫
R
z dV,

where M is the mass of the hemisphere:

M =

∫∫∫
R
dV.
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2.3 Setting Up the Integral in Spherical Coordinates

Spherical coordinates (r, θ, φ) are related to Cartesian coordinates by:

x = r sinφ cos θ, y = r sinφ sin θ, z = r cosφ,

where:

• r ≥ 0 is the radial distance,

• 0 ≤ θ < 2π is the azimuthal angle,

• 0 ≤ φ ≤ π is the polar angle.

The volume element in spherical coordinates is:

dV = r2 sinφdr dφ dθ.

2.3.1 Limits of Integration

For the upper hemisphere:

0 ≤ r ≤ a, 0 ≤ θ < 2π, 0 ≤ φ ≤ π

2
.
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2.4 Calculating the Mass M

First, compute the mass M :

M =

∫∫∫
R
dV =

∫ 2π

0

∫ π
2

0

∫ a

0
r2 sinφdr dφ dθ.

2.4.1 Evaluating the Integral

1. **Integrate with respect to r:**∫ a

0
r2 dr =

[
r3

3

]a
0

=
a3

3
.

2. **Integrate with respect to φ:**∫ π
2

0
sinφdφ = [− cosφ]

π
2
0 = − cos

(π
2

)
+ cos(0) = 0 + 1 = 1.

3. **Integrate with respect to θ:**∫ 2π

0
dθ = 2π.

4. **Combine the results:**

M =
a3

3
× 1× 2π =

2πa3

3
.
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2.5 Calculating triple integral

Next, compute the integral
∫∫∫

R z dV :∫∫∫
R
z dV =

∫ 2π

0

∫ π
2

0

∫ a

0
(r cosφ)r2 sinφdr dφ dθ.

2.5.1 Simplifying the Integrand

z dV = (r cosφ) · r2 sinφdr dφ dθ = r3 cosφ sinφdr dφ dθ.

2.5.2 Evaluating the Integral

1. **Integrate with respect to r:**∫ a

0
r3 dr =

[
r4

4

]a
0

=
a4

4
.

2. **Integrate with respect to φ:**∫ π
2

0
cosφ sinφdφ.

Use the substitution u = sinφ, du = cosφdφ:∫ π
2

0
u du =

[
u2

2

]1
0

=
1

2
.

3. **Integrate with respect to θ:**∫ 2π

0
dθ = 2π.

4. **Combine the results:**∫∫∫
R
z dV =

a4

4
× 1

2
× 2π =

a4π

4
.
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2.6 Calculating the Center of Mass z

Using the formula:

z =
1

M

∫∫∫
R
z dV =

a4π
4

2πa3

3

=
a4π

4
× 3

2πa3
=

3a

8
.
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2.7 Conclusion

The center of mass of the hemisphere of radius a with uniform density is
located at:

(x, y, z) =

(
0, 0,

3a

8

)
.
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3 Gravitational Attraction of a Region R on a Unit
Mass at the Origin

We are tasked with finding the gravitational attraction of the region R
bounded above by the plane z = 2 and below by the cone z2 = 4(x2 + y2),
on a unit mass located at the origin. The region R has a constant density
δ = 1.
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3.1 Understanding the Region R

Description of R

- **Lower Bound:** The cone z2 = 4(x2 + y2) can be rewritten as z =
2
√
x2 + y2 (considering z ≥ 0). - **Upper Bound:** The plane z = 2. -

**Intersection:** To find the boundary of R, set z = 2
√

x2 + y2 equal to
z = 2:

2
√
x2 + y2 = 2 =⇒

√
x2 + y2 = 1 =⇒ x2 + y2 = 1

Thus, the cone and the plane intersect along the circle x2+ y2 = 1 at z = 2.
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3.2 Setting Up the Gravitational Attraction

The gravitational attraction F at the origin due to the mass distribution in
R is given by:

F = −G

∫∫∫
R

r

|r|3
δ dV

where: - G is the gravitational constant (assuming G = 1 for simplicity), -
r = 〈x, y, z〉 is the position vector of a point in R, - |r| =

√
x2 + y2 + z2.

Due to the symmetry of the region R about the z-axis, the x and y-
components of F will cancel out, leaving only the z-component. Therefore,
we focus on calculating the z-component of F, denoted as Fz:

Fz = −G

∫∫∫
R

z

(x2 + y2 + z2)3/2
dV

Assuming G = 1, we have:

Fz = −
∫∫∫

R

z

(x2 + y2 + z2)3/2
dV
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3.3 Converting to Cylindrical Coordinates

To evaluate the integral, we convert to cylindrical coordinates (r, θ, z), where:

x = r cos θ, y = r sin θ, z = z

The volume element in cylindrical coordinates is:

dV = r dz dr dθ

The integrand becomes:
z

(r2 + z2)3/2

Determining the Limits of Integration

- **Radial Distance r:** For a fixed z, r ranges from 0 up to where the cone
and plane intersect:

z = 2r =⇒ r =
z

2

However, since the plane z = 2 bounds z, r ranges from 0 to z
2 .

- **Height z:** Ranges from the base of the cone z = 0 up to the plane
z = 2.

- **Azimuthal Angle θ:** Full rotation around the z-axis, 0 ≤ θ < 2π.
Thus, the limits are:

0 ≤ θ < 2π, 0 ≤ z ≤ 2, 0 ≤ r ≤ z

2
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3.4 Setting Up the Integral

The z-component of the gravitational attraction is:

Fz = −
∫ 2π

0

∫ 2

0

∫ z
2

0

z

(r2 + z2)3/2
· r dr dz dθ
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3.5 Evaluating the Integral

Step 1: Integrate with Respect to r

Consider the inner integral:

Ir =

∫ z
2

0

z · r
(r2 + z2)3/2

dr

Let u = r2 + z2, then du = 2r dr, so r dr = du
2 .

Substituting:

Ir = z·1
2

∫ u=z2+
(
z
2

)2
u=z2

u−3/2 du =
z

2

[
−2u−1/2

] 5z2

4

z2
=

z

2

−2 · 1√
5z2

4

+ 2 · 1√
z2


Simplify:

Ir =
z

2

(
−2 · 2

z
√
5
+ 2 · 1

z

)
=

z

2

(
− 4

z
√
5
+

2

z

)
=

z

2
·−4 + 2

√
5

z
√
5

=
−4 + 2

√
5

2
√
5

=
−2 +

√
5√

5
=

√
5− 2√
5

Step 2: Integrate with Respect to z

Now, the integral becomes:

Fz = −
∫ 2π

0

∫ 2

0

√
5− 2√
5

dz dθ = −
√
5− 2√
5

∫ 2π

0

∫ 2

0
dz dθ

Evaluate the integrals: ∫ 2

0
dz = 2,

∫ 2π

0
dθ = 2π

Thus:

Fz = −
√
5− 2√
5

· 2 · 2π = −4π ·
√
5− 2√
5

= −4π

(√
5− 2√
5

)
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3.6 Simplifying the Expression

Rationalize the denominator:

Fz = −4π

(√
5− 2√
5

)
= −4π

(
(
√
5− 2)√
5

·
√
5√
5

)
= −4π

(
5− 2

√
5

5

)
= −4π

(
1− 2

√
5

5

)
= −4π+

8π√
5

Alternatively, leaving it in the original form is also acceptable:

Fz = −4π

(
1− 2√

5

)
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3.7 Final Answer

The gravitational attraction of the region R on a unit mass at the origin is
directed along the negative z-axis and has a magnitude of:

F =

(
0, 0,−4π

(
1− 2√

5

))
Alternatively, rationalized:

F =

(
0, 0,−4π

(√
5− 2√
5

))

This vector represents the gravitational force exerted by the region R on the
unit mass at the origin.

23


	Solution
	Understanding the Region  R 
	Description of  R 
	Finding the Intersection of the Cone and Hemisphere

	Part (a): Expressing the Integral in Spherical Coordinates
	Spherical Coordinates Overview
	Determining the Limits of Integration
	Setting Up the Integral

	Part (b): Expressing the Integral in Cylindrical Coordinates
	Cylindrical Coordinates Overview
	Determining the Limits of Integration
	Setting Up the Integral

	Conclusion

	Center of Mass of a Hemisphere
	Understanding the Problem
	Formula for Center of Mass
	Setting Up the Integral in Spherical Coordinates
	Limits of Integration

	Calculating the Mass  M 
	Evaluating the Integral

	Calculating triple integral
	Simplifying the Integrand
	Evaluating the Integral

	Calculating the Center of Mass  z 
	Conclusion

	Gravitational Attraction of a Region  R  on a Unit Mass at the Origin
	Understanding the Region  R 
	Setting Up the Gravitational Attraction
	Converting to Cylindrical Coordinates
	Setting Up the Integral
	Evaluating the Integral
	Simplifying the Expression
	Final Answer


