Quick answer key to Recitation 16

ChatGPT 40

$4 \ {\rm November} \ 2024$

Use the table of contents below to skip to a specific part without seeing spoilers to the other parts.

I just used ChatGPT to write this one quickly. ChatGPT can make mistakes, so if you spot anything that's wrong, flag me to ask.

Contents

1	Problem 1		2
	1.1	(a) Find the curl of \mathbf{F} .	3
	1.2	(b) For what values of a is \mathbf{F} a conservative gradient field?	4
	1.3	(c) For those values of a find a potential function	5
2	Problem 2		
	2.1	(a) Find the curl of \mathbf{F}	7
	2.2	(b) For what values of a is F a conservative gradient field?	8
	2.3	(c) For those values of a find a potential function	9
3	Problem 3		10
	3.1	(a) Calculate the curl of G .	11
	3.2	(b) Show that G is not a gradient vector field by calculating	
		the line integral $\int_C \mathbf{G} \cdot d\mathbf{r}$ for the closed curve C given by the	
		unit circle, oriented counterclockwise.	12

1 Problem 1

Consider the vector field $\mathbf{F} = (y^2 + 2x)\mathbf{i} + axy\mathbf{j}$.

1.1 (a) Find the curl of F.

In two dimensions, the curl of a vector field ${\bf F}=P{\bf i}+Q{\bf j}$ is given by:

$$\operatorname{curl} \mathbf{F} = \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}$$

Given:

$$P = y^2 + 2x$$
 and $Q = axy$

Compute the partial derivatives:

$$\frac{\partial Q}{\partial x} = ay$$
 and $\frac{\partial P}{\partial y} = 2y$

Therefore, the curl is:

$$\operatorname{curl} \mathbf{F} = ay - 2y = (a - 2)y$$

1.2 (b) For what values of *a* is F a conservative gradient field?

A vector field is conservative if its curl is zero throughout the domain. Setting the curl to zero:

$$(a-2)y = 0$$

For the curl to be zero for all y, we require:

$$a - 2 = 0 \implies a = 2$$

1.3 (c) For those values of a find a potential function.

For a = 2, the vector field becomes:

$$\mathbf{F} = (y^2 + 2x)\mathbf{i} + 2xy\mathbf{j}$$

We seek a function f(x, y) such that:

$$\frac{\partial f}{\partial x} = y^2 + 2x$$
 and $\frac{\partial f}{\partial y} = 2xy$

Integrate $\frac{\partial f}{\partial x}$ with respect to x:

$$f(x,y) = \int (y^2 + 2x) \, dx = y^2 x + x^2 + \phi(y)$$

Differentiate f(x, y) with respect to y:

$$\frac{\partial f}{\partial y} = 2yx + \phi'(y)$$

Set equal to $\frac{\partial f}{\partial y}$:

$$2yx + \phi'(y) = 2xy \implies \phi'(y) = 0$$

Thus, $\phi(y)$ is a constant. The potential function is:

$$f(x,y) = xy^2 + x^2 + C$$

2 Problem 2

Consider the vector field $\mathbf{F} = e^{x+y} \left((x+a)\mathbf{i} + x\mathbf{j} \right).$

2.1 (a) Find the curl of F.

Given:

$$P = e^{x+y}(x+a)$$
 and $Q = e^{x+y}x$

Compute the partial derivatives:

$$\frac{\partial Q}{\partial x} = e^{x+y}x + e^{x+y} = e^{x+y}(x+1)$$
$$\frac{\partial P}{\partial y} = e^{x+y}(x+a)$$

Therefore, the curl is:

$$\operatorname{curl} \mathbf{F} = \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = e^{x+y}(x+1) - e^{x+y}(x+a) = e^{x+y}(1-a)$$

2.2 (b) For what values of *a* is F a conservative gradient field?

Set the curl to zero:

$$e^{x+y}(1-a) = 0$$

Since $e^{x+y} > 0$ for all x, y, we have:

$$1-a=0 \implies a=1$$

2.3 (c) For those values of a find a potential function.

For a = 1, the vector field simplifies to:

$$\mathbf{F} = e^{x+y}(x+1)\mathbf{i} + e^{x+y}x\mathbf{j}$$

We need a function f(x, y) such that:

$$\frac{\partial f}{\partial x} = e^{x+y}(x+1)$$
 and $\frac{\partial f}{\partial y} = e^{x+y}x$

Integrate $\frac{\partial f}{\partial x}$ with respect to x:

$$f(x,y) = \int e^{x+y}(x+1) \, dx$$

Let u = x + y, then du = dx (since y is treated as constant during integration with respect to x). Rewrite the integral:

$$f(x,y) = \int e^u(x+1) \, du$$

But since x = u - y, we have:

$$f(x,y) = \int e^u (u-y+1) \, du$$

Simplify and integrate:

$$f(x,y) = \int e^u (u-y+1) \, du = e^u (u-y)$$

Substitute back u = x + y:

$$f(x,y) = e^{x+y}(x+y-y) = e^{x+y}x$$

Compute the partial derivatives to verify:

$$\frac{\partial f}{\partial x} = e^{x+y}x + e^{x+y} = e^{x+y}(x+1)$$
$$\frac{\partial f}{\partial y} = e^{x+y}x$$

Thus, the potential function is:

$$f(x,y) = xe^{x+y}$$

3 Problem 3

Consider the vector field $\mathbf{G} = -\frac{y}{x^2 + y^2}\mathbf{i} + \frac{x}{x^2 + y^2}\mathbf{j}.$

3.1 (a) Calculate the curl of G.

Given:

$$P = -\frac{y}{x^2 + y^2}$$
 and $Q = \frac{x}{x^2 + y^2}$

Compute the partial derivatives:

$$\frac{\partial Q}{\partial x} = \frac{(1)(x^2 + y^2) - x(2x)}{(x^2 + y^2)^2} = \frac{-x^2 + y^2}{(x^2 + y^2)^2}$$
$$\frac{\partial P}{\partial y} = -\left(\frac{(1)(x^2 + y^2) - y(2y)}{(x^2 + y^2)^2}\right) = -\left(\frac{x^2 - y^2}{(x^2 + y^2)^2}\right)$$

Compute the curl:

$$\operatorname{curl} \mathbf{G} = \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = \frac{-x^2 + y^2}{(x^2 + y^2)^2} - \left(-\frac{x^2 - y^2}{(x^2 + y^2)^2}\right) = 0$$

Therefore, the curl of \mathbf{G} is zero everywhere except possibly at the origin.

3.2 (b) Show that G is not a gradient vector field by calculating the line integral $\int_C \mathbf{G} \cdot d\mathbf{r}$ for the closed curve C given by the unit circle, oriented counterclockwise.

Parametrize the unit circle:

$$x = \cos \theta, \quad y = \sin \theta, \quad \theta \in [0, 2\pi]$$

Compute differentials:

$$dx = -\sin\theta \, d\theta, \quad dy = \cos\theta \, d\theta$$

Evaluate **G** along C:

$$P = -\frac{y}{x^2 + y^2} = -\frac{\sin \theta}{1} = -\sin \theta, \quad Q = \frac{x}{x^2 + y^2} = \frac{\cos \theta}{1} = \cos \theta$$

Compute the dot product:

 $\mathbf{G} \cdot d\mathbf{r} = P \, dx + Q \, dy = (-\sin\theta)(-\sin\theta \, d\theta) + (\cos\theta)(\cos\theta \, d\theta) = (\sin^2\theta + \cos^2\theta) \, d\theta = d\theta$

Integrate over C:

$$\int_C \mathbf{G} \cdot d\mathbf{r} = \int_0^{2\pi} d\theta = 2\pi$$

Since the line integral around the closed curve C is non-zero, ${\bf G}$ is not a conservative vector field.