Notes for 18.02 Recitation 17

18.02 Recitation MW9

Evan Chen

6 November 2024

Calvin, your test was an absolute disgrace! It's obvious you haven't read any of the material. Our first president was **not** Chef Boy-Ar-Dee and you ought to be ashamed to have turned in such preposterous answers!

- Miss Wormwood in Calvin and Hobbes, October 1, 1993

This handout (and any other DLC's I write) are posted at https://web.evanchen.cc/1802.html.

§1 Finding potential functions (see LAMV section 16)

⅔ How to find an anti-gradient with two variables

- 1. Let f denote the gradient function.
- 2. Integrate the given $\frac{\partial f}{\partial x}$ to get some equation of the form f(x, y) = expression + g(y) for some function g(y).
- 3. Put this into $\frac{\partial f}{\partial y}$ to find g'(y).
- 4. Integrate get $g(y) = \exp ression + C$ for some constant C.
- 5. Stitch everything together to output f.

Some examples were covered in class today, so here's one where we actually get stuck:

? Impossible question

Find f such that $\nabla f = \begin{pmatrix} 2y \\ x \end{pmatrix}$.

Solution. We start by integrating $\frac{\partial f}{\partial x}$ with respect to x to get $f(x, y) = \int 2y \, dx = 2xy + g(y)$ to start. Then differentiating with respect to y gives $\frac{\partial f}{\partial y} = \frac{\partial}{\partial y}(2xy + g(y)) = 2x + g'(y)$. So then we set this equal and get 2x = g'(y) + x and so we need to solve g'(y) = x which... wait! There's no way a function g can satisfy that for *every* x. What's going on? (It's tempting to write g(y) = xy + C, but that's a type error: These new function g can only depend on its arguments.)

In mathematics there's a concept of *proof by contradiction*: if you start from an assumption, and then do some logic and reasoning to reach an impossible conclusion, then the starting assumption was wrong. Here, the starting assumption that there was *some* function f such that $\nabla f = \begin{pmatrix} 2y \\ x \end{pmatrix}$. Starting from this assumption we found that there was a function $g : \mathbb{R} \to \mathbb{R}$ such that g'(y) = x for every real number x, which is ridiculous. So our assumption was wrong: there can't be such function f. Not like 18.01 where "f exists but is hard to write down"; the function f literally cannot exist.

Okay, so I bet you're all wondering now, "how can I tell if the question is impossible?". Well, one strategy would just be to run the recipe I showed you and see if it works out.

- If you find a function f that works, great.
- If you run into a contradiction, well, now you know it's impossible.

But that's a lot of work. We'd like a shortcut, and there is one.

Memorize: Criteria for 2D anti-gradient to exist

 $\binom{p(x,y)}{q(x,y)}$ is conservative if and only if $\frac{\partial p}{\partial y} = \frac{\partial q}{\partial x}$ (assume p and q are continuously differentiable).

One direction of this is the result $f_{xy} = f_{yx}$ you saw during the second derivative test. The nice thing is that it works the other way too: vector fields that pass this test will be conservative.

§2 Preview of Thu/Fri lectures (LAMV sections 29.5, 30.8, 31)

On Thursday, we'll introduce the **2D scalar curl**, the right highlighted Stokes arrow above.

- When you chain two red Stokes arrows in the poster, you always get 0. Indeed the 2D scalar is RHS LHS of the criteria above.
- Every red Stokes arrow has a Stokes result; this time it will be Green's theorem.

On Friday you'll meet **2D flux** which I hate, but it is a rotated version of the work integral:

Definition of 2D flux
2D flux :=
$$\int_{t=\text{start time}}^{\text{stop time}} \mathbf{F}(\mathbf{r}(t)) \cdot (90^{\circ} \text{ clockwise rotation of } \mathbf{r}'(t)) dt.$$

The "90° clockwise rotation of $\mathbf{r}'(t)$ " is so awkward that you can bet people immediately made up a shorthand to sweep it under the rug. I think the usual notation is

 $\mathbf{n} \, \mathrm{d}s \coloneqq (90^{\circ} \text{ clockwise rotation of } \mathbf{r}'(t)) \, \mathrm{d}t$

so that the above thing will usually be condensed to $\oint_{\mathcal{C}} \mathbf{F} \cdot \mathbf{n} \, ds$. Because 2D flux is a rotated work integral, you'll get a Green's theorem for 2D flux too. Read LAMV 31.3 to see it.

§3 Recitation questions from the official course

1. Consider the vector field $\mathbf{F} = (y^2 + 2x)\mathbf{i} + axy\mathbf{j}$.

- Find the curl of **F**.
- For what values of a is **F** a conservative gradient field?
- For those values of *a* find a potential function.
- **2.** Repeat Q1 for $\mathbf{F} = e^{x+y}((x+a)\mathbf{i} + x\mathbf{j})$.
- **3.** Consider the vector field $\mathbf{G} = -\frac{y}{x^2+y^2}\mathbf{i} + \frac{x}{x^2+y^2}\mathbf{j}$. Calculate the curl of \mathbf{G} . Show that \mathbf{G} is not a gradient vector field by calculating the line integral $\int_C G \cdot d\mathbf{r}$ for the closed curve C given by the unit circle, oriented counterclockwise.