Quick answer key to Recitation 16

ChatGPT 4o

4 November 2024

Use the table of contents below to skip to a specific part without seeing spoilers to the other parts.

I just used ChatGPT to write this one quickly. ChatGPT can make mistakes, so if you spot anything that's wrong, flag me to ask.

Contents

1 Solution

1.1 (a)

We are given the vector field $\mathbf{F}(x, y) = \langle x, -y \rangle$ on the xy-plane. We are to sketch this vector field and, on the same picture, draw the oriented path C from $(-1, 0)$ to $(0, -1)$ given by the unit circle in the quadrant where $x \leq 0$ and $y \leq 0$.

To sketch the vector field $\mathbf{F}(x, y) = \langle x, -y \rangle$:

- At any point (x, y) , the vector points in the direction $\langle x, -y \rangle$. - For example: - At $(1, 0)$, $\mathbf{F} = \langle 1, 0 \rangle$, pointing right. - At $(0, 1)$, $\mathbf{F} = \langle 0, -1 \rangle$, pointing downward. - At $(-1, 0)$, $\mathbf{F} = \langle -1, 0 \rangle$, pointing left. - At $(0, -1)$, $\mathbf{F} = \langle 0, 1 \rangle$, pointing upward.

The path C is the quarter-circle from $(-1, 0)$ to $(0, -1)$ along the unit circle in the third quadrant $(x \leq 0, y \leq 0)$. The path is oriented from $(-1, 0)$ to $(0, -1)$ in the clockwise direction.

1.2 (b)

Using the picture as a guide, we can estimate whether the line integral Z $\mathcal{C}_{0}^{(n)}$ $x dx - y dy$ is positive, negative, or zero.

Along the path C :

- Both x and y are negative. - The vector field $\mathbf{F} = \langle x, -y \rangle$ evaluated along C has: - x-component negative (since $x < 0$). - y-component positive (since $-y > 0$ when $y < 0$).

The tangent vector to the path C is:

- Oriented clockwise from $(-1, 0)$ to $(0, -1)$. - At each point, the tangent vector points in the direction of motion along C.

Since the vector field \bf{F} and the tangent vector to C are generally pointing in opposite directions (the x -components are both negative, but the y-components are opposite in sign), their dot product will be negative.

Therefore, we can expect that the line integral \int $\mathcal{C}_{0}^{(n)}$ x dx−y dy is **negative**.

1.3 Corrected Calculation for Part (c)

Re-parametrize C to match the orientation from $(-1,0)$ to $(0,-1)$ (clockwise):

Let θ go from π to $\frac{3\pi}{2}$ **decreasing**:

$$
\theta=\pi-t, \quad t\in [0,\tfrac{\pi}{2}]
$$

Then:

$$
x = \cos(\theta) = \cos(\pi - t) = -\cos t, \quad y = \sin(\theta) = \sin(\pi - t) = \sin t
$$

Compute dx and dy:

$$
dx = \sin t \, dt, \quad dy = \cos t \, dt
$$

Compute the integral:

$$
\int_C x \, dx - y \, dy = \int_{t=0}^{\frac{\pi}{2}} (-\cos t \cdot \sin t \, dt - \sin t \cdot \cos t \, dt) = -2 \int_0^{\frac{\pi}{2}} \cos t \sin t \, dt
$$

Simplify using $\cos t \sin t = \frac{1}{2}$ $rac{1}{2}$ sin 2t:

$$
-2 \times \frac{1}{2} \int_0^{\frac{\pi}{2}} \sin 2t \, dt = -\int_0^{\frac{\pi}{2}} \sin 2t \, dt
$$

Integrate:

$$
-(-\frac{1}{2}\cos 2t)\Big|_0^{\frac{\pi}{2}} = \frac{1}{2}(\cos \pi - \cos 0) = \frac{1}{2}(-1 - 1) = -1
$$

Thus, the value of the integral is $\boxed{-1}$, consistent with the result from part (d).

1.4 (d)

We are to find a function $f(x, y)$ such that $\nabla f = \langle x, -y \rangle$. Compute $f(x, y)$:

- Since $\frac{\partial f}{\partial x} = x$, integrate with respect to x: $f(x,y) = \int x dx + g(y) = \frac{1}{2}x^2 + g(y)$

$$
J
$$
 - Differentiate f with respect to y :

$$
\frac{\partial f}{\partial y} = g'(y)
$$

Given that $\frac{\partial f}{\partial y} = -y$, we have:

$$
g'(y) = -y \implies g(y) = -\frac{1}{2}y^2 + C
$$

Thus, the function is:

$$
f(x,y) = \frac{1}{2}x^2 - \frac{1}{2}y^2 + C
$$

Using the fundamental theorem of line integrals:

$$
\int_C x \, dx - y \, dy = f((0, -1)) - f((-1, 0))
$$

Compute $f(0, -1)$:

$$
f(0,-1) = \frac{1}{2}(0)^2 - \frac{1}{2}(-1)^2 = -\frac{1}{2}
$$

Compute $f(-1,0)$:

$$
f(-1,0) = \frac{1}{2}(-1)^2 - \frac{1}{2}(0)^2 = \frac{1}{2}
$$

Therefore:

$$
\int_C x \, dx - y \, dy = f(0, -1) - f(-1, 0) = \left(-\frac{1}{2}\right) - \left(\frac{1}{2}\right) = -1
$$

2 Solution

2.1 (a)

We are asked to calculate the line integral:

$$
\int_C \mathbf{F} \cdot d\mathbf{r}
$$

where $\mathbf{F} = (x + y)\mathbf{i} + (xy)\mathbf{j}$, and C is the broken line running from $(0, 0)$ to $(2, 2)$ to $(0, 2)$.

2.1.1 Parameterization of the Path C

The path ${\cal C}$ consists of two segments:

- 1. Segment C_1 : from $(0,0)$ to $(2,2)$.
- 2. Segment C_2 : from $(2, 2)$ to $(0, 2)$.

Segment C_1 : We can parametrize C_1 as:

$$
x = t,
$$

\n
$$
y = t,
$$

\n
$$
t \in [0, 2].
$$

Compute dr:

$$
d\mathbf{r} = (dx, dy) = (dt, dt).
$$

Compute $\mathbf{F} \cdot d\mathbf{r}$:

$$
\mathbf{F} \cdot d\mathbf{r} = [(x+y), xy] \cdot (dx, dy) = (x+y)dx + xydy.
$$

Since $x = y = t$, we have:

$$
x + y = t + t = 2t,
$$

\n
$$
xy = t \cdot t = t^2,
$$

\n
$$
dx = dt,
$$

\n
$$
dy = dt.
$$

Therefore,

$$
\mathbf{F} \cdot d\mathbf{r} = (2t)(dt) + (t^2)(dt) = [2t + t^2]dt.
$$

Compute the integral over C_1 :

$$
\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{t=0}^2 [2t + t^2] dt = \left[t^2 + \frac{1}{3} t^3 \right]_0^2 = \left(4 + \frac{8}{3} \right) - 0 = \frac{12}{3} + \frac{8}{3} = \frac{20}{3}.
$$

Segment C_2 : We can parametrize C_2 as:

$$
x = 2 - t,
$$

\n
$$
y = 2,
$$

\n
$$
t \in [0, 2].
$$

Compute dr:

$$
d\mathbf{r} = (dx, dy) = (-dt, 0).
$$

Compute $\mathbf{F} \cdot d\mathbf{r}$:

 $$ Since $y = 2, x = 2 - t$, we have:

$$
x + y = (2 - t) + 2 = 4 - t,
$$

\n
$$
xy = (2 - t)(2) = 4 - 2t,
$$

\n
$$
dx = -dt,
$$

\n
$$
dy = 0.
$$

Therefore,

$$
\mathbf{F} \cdot d\mathbf{r} = (4-t)(-dt) + (4-2t)(0) = -(4-t)dt = (-4+t)dt.
$$

Compute the integral over C_2 :

$$
\int_{C_2} \mathbf{F} \cdot d\mathbf{r} = \int_{t=0}^2 (-4+t)dt = \left[-4t + \frac{1}{2}t^2 \right]_0^2 = (-8+2) - 0 = -6.
$$

Total Integral: Add the integrals over C_1 and C_2 :

$$
\int_C \mathbf{F} \cdot d\mathbf{r} = \int_{C_1} \mathbf{F} \cdot d\mathbf{r} + \int_{C_2} \mathbf{F} \cdot d\mathbf{r} = \frac{20}{3} - 6 = \frac{20}{3} - \frac{18}{3} = \frac{2}{3}.
$$

2.2 Answer:

$$
\int_C \mathbf{F} \cdot d\mathbf{r} = \frac{2}{3}
$$

2.3 (b)

We are asked to calculate the line integral:

$$
\int_C (x^2 - y) \, dx + 2x \, dy
$$

where C is the path from $(-1,0)$ to $(1,0)$ along the parabola $y = 1-x^2$.

2.3.1 Parametrization of the Path C

We can parametrize C as:

$$
x = t,
$$

\n
$$
y = 1 - t^2,
$$

\n
$$
t \in [-1, 1].
$$

Compute dx and dy :

$$
dx = dt, \quad dy = -2t \, dt.
$$

Compute the integrand:

$$
(x^2 - y) dx + 2x dy.
$$

Substitute x, y, dx , and dy :

$$
x^{2} - y = t^{2} - (1 - t^{2}) = t^{2} - 1 + t^{2} = 2t^{2} - 1,
$$

\n
$$
dx = dt,
$$

\n
$$
2x = 2t,
$$

\n
$$
dy = -2t dt.
$$

Compute each term:

$$
(x^2 - y) dx = (2t^2 - 1)dt
$$
, $2x dy = 2t \cdot (-2t dt) = -4t^2 dt$.

Add the terms:

$$
(x2 - y) dx + 2x dy = (2t2 - 1)dt - 4t2 dt = (-2t2 - 1)dt.
$$

Simplify:

$$
(-2t^2 - 1)dt = -(2t^2 + 1)dt.
$$

Compute the integral:

$$
\int_{t=-1}^{1} -(2t^2+1)dt = -\left[\frac{2}{3}t^3+t\right]_{-1}^{1} = -\left(\left(\frac{2}{3}(1)^3+1\right) - \left(\frac{2}{3}(-1)^3+(-1)\right)\right).
$$

Compute the values:

At
$$
t = 1
$$
: $\frac{2}{3}(1) + 1 = \frac{2}{3} + 1 = \frac{5}{3}$,
At $t = -1$: $\frac{2}{3}(-1) + (-1) = -\frac{2}{3} - 1 = -\frac{5}{3}$.

Subtract:

$$
\left(\frac{5}{3}\right) - \left(-\frac{5}{3}\right) = \frac{10}{3}.
$$

Therefore,

$$
\int_C (x^2 - y) \, dx + 2x \, dy = -\left(\frac{10}{3}\right) = -\frac{10}{3}.
$$

2.4 Answer:

$$
\int_C (x^2 - y) \, dx + 2x \, dy = -\frac{10}{3}
$$

3 Solution

3.1 Part 1: Finding the Gradient Vector Field $\mathbf{F} = \nabla f(x, y)$ Given the function:

$$
f(x, y) = \sin(x)\cos(y)
$$

Compute the partial derivatives with respect to x and y :

$$
\frac{\partial f}{\partial x} = \cos(x)\cos(y)
$$

$$
\frac{\partial f}{\partial y} = -\sin(x)\sin(y)
$$

Therefore, the gradient vector field is:

$$
\mathbf{F} = \nabla f(x, y) = (\cos(x)\cos(y), -\sin(x)\sin(y))
$$

3.2 Part 2: Maximizing the Line Integral \mathcal{C}_{0}^{0} $\mathbf{F} \cdot d\mathbf{r}$

Since \bf{F} is the gradient of f , the line integral over a path C from point A to point B is given by the fundamental theorem of line integrals:

$$
\int_C \mathbf{F} \cdot d\mathbf{r} = f(B) - f(A)
$$

To find the maximum possible value of the line integral as C ranges over all possible paths in the plane, we need to maximize the difference $f(B) - f(A)$.

3.2.1 Finding the Maximum and Minimum Values of $f(x, y)$

The function $f(x, y) = \sin(x) \cos(y)$ attains its maximum and minimum values based on the ranges of the sine and cosine functions:

$$
\sin(x) \in [-1, 1]
$$

$$
\cos(y) \in [-1, 1]
$$

Therefore, the maximum and minimum values of $f(x, y)$ are:

$$
f_{\text{max}} = \sin(x_{\text{max}})\cos(y_{\text{max}}) = (1)(1) = 1
$$

\n $f_{\text{min}} = \sin(x_{\text{min}})\cos(y_{\text{min}}) = (-1)(-1) = 1$

Wait, this suggests that both the maximum and minimum values are 1, which is incorrect. Let's reconsider.

Actually, the minimum value occurs when one of the functions is 1 and the other is -1:

$$
f_{\min} = \sin(x_{\min}) \cos(y_{\min}) = (1)(-1) = -1
$$
 or $(-1)(1) = -1$

Therefore, the correct maximum and minimum values are:

$$
f_{\text{max}} = 1
$$

$$
f_{\text{min}} = -1
$$

3.2.2 Calculating the Maximum Value of the Line Integral

The maximum possible value of the line integral is:

$$
\int_C \mathbf{F} \cdot d\mathbf{r} = f(B) - f(A) \le f_{\text{max}} - f_{\text{min}} = 1 - (-1) = 2
$$

Thus, the maximum possible value of the line integral is $\boxed{2}$.

3.3 Conclusion

The gradient vector field is:

$$
\mathbf{F} = \nabla f(x, y) = (\cos(x)\cos(y), -\sin(x)\sin(y))
$$

The maximum possible value of the line integral \int \mathcal{C}_{0}^{0} $\mathbf{F} \cdot d\mathbf{r}$ as C ranges over all possible paths in the plane is:

$$
\int_C \mathbf{F} \cdot d\mathbf{r} \le 2
$$

Therefore, the maximum value is $\boxed{2}$.