Quick answer key to Recitation 16

ChatGPT 40

$4 \ {\rm November} \ 2024$

Use the table of contents below to skip to a specific part without seeing spoilers to the other parts.

I just used ChatGPT to write this one quickly. ChatGPT can make mistakes, so if you spot anything that's wrong, flag me to ask.

Contents

1	Solution		2
	1.1	(a)	2
	1.2	(b)	3
	1.3	Corrected Calculation for Part (c)	4
	1.4	(d)	5
2	Solu	ation	6
	2.1	(a)	6
		2.1.1 Parameterization of the Path C	$\overline{7}$
	2.2	Answer:	9
	2.3	(b)	10
		2.3.1 Parametrization of the Path C	11
	2.4	Answer:	13
3	Solution		14
	3.1	Part 1: Finding the Gradient Vector Field $\mathbf{F} = \nabla f(x, y)$	14
	3.2	Part 2: Maximizing the Line Integral $\int_{C} \mathbf{F} \cdot d\mathbf{r}$	15
		3.2.1 Finding the Maximum and Minimum Values of $f(x, y)$	16
		3.2.2 Calculating the Maximum Value of the Line Integral .	17
	3.3	Conclusion	18

1 Solution

1.1 (a)

We are given the vector field $\mathbf{F}(x, y) = \langle x, -y \rangle$ on the *xy*-plane. We are to sketch this vector field and, on the same picture, draw the oriented path C from (-1, 0) to (0, -1) given by the unit circle in the quadrant where $x \leq 0$ and $y \leq 0$.

To sketch the vector field $\mathbf{F}(x, y) = \langle x, -y \rangle$:

- At any point (x, y), the vector points in the direction $\langle x, -y \rangle$. - For example: - At (1, 0), $\mathbf{F} = \langle 1, 0 \rangle$, pointing right. - At (0, 1), $\mathbf{F} = \langle 0, -1 \rangle$, pointing downward. - At (-1, 0), $\mathbf{F} = \langle -1, 0 \rangle$, pointing left. - At (0, -1), $\mathbf{F} = \langle 0, 1 \rangle$, pointing upward.

The path C is the quarter-circle from (-1,0) to (0,-1) along the unit circle in the third quadrant $(x \leq 0, y \leq 0)$. The path is oriented from (-1,0) to (0,-1) in the clockwise direction.

1.2 (b)

Using the picture as a guide, we can estimate whether the line integral $\int_C x \, dx - y \, dy$ is positive, negative, or zero.

Along the path C:

- Both x and y are negative. - The vector field $\mathbf{F} = \langle x, -y \rangle$ evaluated along C has: - x-component negative (since x < 0). - y-component positive (since -y > 0 when y < 0).

The tangent vector to the path C is:

- Oriented clockwise from (-1, 0) to (0, -1). - At each point, the tangent vector points in the direction of motion along C.

Since the vector field \mathbf{F} and the tangent vector to C are generally pointing in opposite directions (the *x*-components are both negative, but the *y*-components are opposite in sign), their dot product will be negative.

Therefore, we can expect that the line integral $\int_C x \, dx - y \, dy$ is **negative**.

1.3 Corrected Calculation for Part (c)

Re-parametrize C to match the orientation from (-1,0) to (0,-1) (clock-wise):

Let θ go from π to $\frac{3\pi}{2}$ decreasing:

$$\theta = \pi - t, \quad t \in [0, \frac{\pi}{2}]$$

Then:

$$x = \cos(\theta) = \cos(\pi - t) = -\cos t, \quad y = \sin(\theta) = \sin(\pi - t) = \sin t$$

Compute dx and dy:

$$dx = \sin t \, dt, \quad dy = \cos t \, dt$$

Compute the integral:

$$\int_C x \, dx - y \, dy = \int_{t=0}^{\frac{\pi}{2}} \left(-\cos t \cdot \sin t \, dt - \sin t \cdot \cos t \, dt \right) = -2 \int_0^{\frac{\pi}{2}} \cos t \sin t \, dt$$

Simplify using $\cos t \sin t = \frac{1}{2} \sin 2t$:

$$-2 \times \frac{1}{2} \int_0^{\frac{\pi}{2}} \sin 2t \, dt = -\int_0^{\frac{\pi}{2}} \sin 2t \, dt$$

Integrate:

$$-\left(-\frac{1}{2}\cos 2t\right)\Big|_{0}^{\frac{\pi}{2}} = \frac{1}{2}\left(\cos\pi - \cos 0\right) = \frac{1}{2}\left(-1 - 1\right) = -1$$

Thus, the value of the integral is $\boxed{-1}$, consistent with the result from part (d).

1.4 (d)

We are to find a function f(x, y) such that $\nabla f = \langle x, -y \rangle$. Compute f(x, y): - Since $\frac{\partial f}{\partial x} = x$, integrate with respect to x:

ſ

$$f(x,y) = \int x \, dx + g(y) = \frac{1}{2}x^2 + g(y)$$

- Differentiate f with respect to y:

$$\frac{\partial f}{\partial y} = g'(y)$$

Given that $\frac{\partial f}{\partial y} = -y$, we have:

$$g'(y) = -y \implies g(y) = -\frac{1}{2}y^2 + C$$

Thus, the function is:

$$f(x,y) = \frac{1}{2}x^2 - \frac{1}{2}y^2 + C$$

Using the fundamental theorem of line integrals:

$$\int_C x \, dx - y \, dy = f\left((0, -1)\right) - f\left((-1, 0)\right)$$

Compute f(0, -1):

$$f(0,-1) = \frac{1}{2}(0)^2 - \frac{1}{2}(-1)^2 = -\frac{1}{2}$$

Compute f(-1, 0):

$$f(-1,0) = \frac{1}{2}(-1)^2 - \frac{1}{2}(0)^2 = \frac{1}{2}$$

Therefore:

$$\int_C x \, dx - y \, dy = f(0, -1) - f(-1, 0) = \left(-\frac{1}{2}\right) - \left(\frac{1}{2}\right) = -1$$

2 Solution

2.1 (a)

We are asked to calculate the line integral:

$$\int_C \mathbf{F} \cdot d\mathbf{r}$$

where $\mathbf{F} = (x+y)\mathbf{i} + (xy)\mathbf{j}$, and C is the broken line running from (0,0) to (2,2) to (0,2).

2.1.1 Parameterization of the Path C

The path ${\cal C}$ consists of two segments:

- 1. Segment C_1 : from (0,0) to (2,2).
- 2. Segment C_2 : from (2, 2) to (0, 2).

Segment C_1 : We can parametrize C_1 as:

$$\begin{aligned} x &= t, \\ y &= t, \\ t &\in [0, 2]. \end{aligned}$$

Compute $d\mathbf{r}$:

$$d\mathbf{r} = (dx, dy) = (dt, dt).$$

Compute $\mathbf{F} \cdot d\mathbf{r}$:

$$\mathbf{F} \cdot d\mathbf{r} = [(x+y), xy] \cdot (dx, dy) = (x+y)dx + xydy.$$

Since x = y = t, we have:

$$\begin{aligned} x+y &= t+t = 2t, \\ xy &= t \cdot t = t^2, \\ dx &= dt, \\ dy &= dt. \end{aligned}$$

Therefore,

$$\mathbf{F} \cdot d\mathbf{r} = (2t)(dt) + (t^2)(dt) = [2t + t^2]dt.$$

Compute the integral over C_1 :

$$\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{t=0}^2 [2t+t^2] dt = \left[t^2 + \frac{1}{3}t^3\right]_0^2 = \left(4 + \frac{8}{3}\right) - 0 = \frac{12}{3} + \frac{8}{3} = \frac{20}{3}.$$

Segment C_2 : We can parametrize C_2 as:

$$x = 2 - t,$$

$$y = 2,$$

$$t \in [0, 2].$$

Compute $d\mathbf{r}$:

$$d\mathbf{r} = (dx, dy) = (-dt, 0).$$

Compute $\mathbf{F} \cdot d\mathbf{r}$:

 $\mathbf{F}\cdot d\mathbf{r} = [(x+y), xy]\cdot (dx, dy) = (x+y)dx + xydy.$ Since $y=2,\, x=2-t,$ we have:

$$x + y = (2 - t) + 2 = 4 - t,$$

$$xy = (2 - t)(2) = 4 - 2t,$$

$$dx = -dt,$$

$$dy = 0.$$

Therefore,

$$\mathbf{F} \cdot d\mathbf{r} = (4-t)(-dt) + (4-2t)(0) = -(4-t)dt = (-4+t)dt.$$

Compute the integral over C_2 :

$$\int_{C_2} \mathbf{F} \cdot d\mathbf{r} = \int_{t=0}^2 (-4+t)dt = \left[-4t + \frac{1}{2}t^2\right]_0^2 = (-8+2) - 0 = -6.$$

Total Integral: Add the integrals over C_1 and C_2 :

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_{C_1} \mathbf{F} \cdot d\mathbf{r} + \int_{C_2} \mathbf{F} \cdot d\mathbf{r} = \frac{20}{3} - 6 = \frac{20}{3} - \frac{18}{3} = \frac{2}{3}.$$

2.2 Answer:

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \frac{2}{3}$$

2.3 (b)

We are asked to calculate the line integral:

$$\int_C (x^2 - y) \, dx + 2x \, dy$$

where C is the path from (-1,0) to (1,0) along the parabola $y = 1 - x^2$.

2.3.1 Parametrization of the Path C

We can parametrize ${\cal C}$ as:

$$x = t,$$

$$y = 1 - t^2,$$

$$t \in [-1, 1].$$

Compute dx and dy:

$$dx = dt, \quad dy = -2t \, dt.$$

Compute the integrand:

$$(x^2 - y)\,dx + 2x\,dy.$$

Substitute x, y, dx, and dy:

$$\begin{aligned} x^2 - y &= t^2 - (1 - t^2) = t^2 - 1 + t^2 = 2t^2 - 1, \\ dx &= dt, \\ 2x &= 2t, \\ dy &= -2t \, dt. \end{aligned}$$

Compute each term:

$$(x^2 - y) dx = (2t^2 - 1)dt, \quad 2x dy = 2t \cdot (-2t dt) = -4t^2 dt.$$

Add the terms:

$$(x^{2} - y) dx + 2x dy = (2t^{2} - 1)dt - 4t^{2}dt = (-2t^{2} - 1)dt.$$

Simplify:

$$(-2t^2 - 1)dt = -(2t^2 + 1)dt.$$

Compute the integral:

$$\int_{t=-1}^{1} -(2t^{2}+1)dt = -\left[\frac{2}{3}t^{3}+t\right]_{-1}^{1} = -\left(\left(\frac{2}{3}(1)^{3}+1\right)-\left(\frac{2}{3}(-1)^{3}+(-1)\right)\right).$$

Compute the values:

At
$$t = 1$$
: $\frac{2}{3}(1) + 1 = \frac{2}{3} + 1 = \frac{5}{3}$,
At $t = -1$: $\frac{2}{3}(-1) + (-1) = -\frac{2}{3} - 1 = -\frac{5}{3}$.

Subtract:

$$\left(\frac{5}{3}\right) - \left(-\frac{5}{3}\right) = \frac{10}{3}.$$

Therefore,

$$\int_C (x^2 - y) \, dx + 2x \, dy = -\left(\frac{10}{3}\right) = -\frac{10}{3}.$$

2.4 Answer:

$$\int_C (x^2 - y) \, dx + 2x \, dy = -\frac{10}{3}$$

3 Solution

3.1 Part 1: Finding the Gradient Vector Field $\mathbf{F} = \nabla f(x, y)$ Given the function:

$$f(x,y) = \sin(x)\cos(y)$$

Compute the partial derivatives with respect to x and y:

$$\frac{\partial f}{\partial x} = \cos(x)\cos(y)$$
$$\frac{\partial f}{\partial y} = -\sin(x)\sin(y)$$

Therefore, the gradient vector field is:

$$\mathbf{F} = \nabla f(x, y) = (\cos(x)\cos(y), -\sin(x)\sin(y))$$

3.2 Part 2: Maximizing the Line Integral $\int_C \mathbf{F} \cdot d\mathbf{r}$

Since **F** is the gradient of f, the line integral over a path C from point A to point B is given by the fundamental theorem of line integrals:

$$\int_C \mathbf{F} \cdot d\mathbf{r} = f(B) - f(A)$$

To find the maximum possible value of the line integral as C ranges over all possible paths in the plane, we need to maximize the difference f(B) - f(A).

3.2.1 Finding the Maximum and Minimum Values of f(x, y)

The function $f(x, y) = \sin(x)\cos(y)$ attains its maximum and minimum values based on the ranges of the sine and cosine functions:

$$\sin(x) \in [-1, 1]$$
$$\cos(y) \in [-1, 1]$$

Therefore, the maximum and minimum values of f(x, y) are:

$$f_{\max} = \sin(x_{\max})\cos(y_{\max}) = (1)(1) = 1$$

$$f_{\min} = \sin(x_{\min})\cos(y_{\min}) = (-1)(-1) = 1$$

Wait, this suggests that both the maximum and minimum values are 1, which is incorrect. Let's reconsider.

Actually, the minimum value occurs when one of the functions is 1 and the other is -1:

$$f_{\min} = \sin(x_{\min})\cos(y_{\min}) = (1)(-1) = -1$$
 or $(-1)(1) = -1$

Therefore, the correct maximum and minimum values are:

$$f_{\max} = 1$$

 $f_{\min} = -1$

3.2.2 Calculating the Maximum Value of the Line Integral

The maximum possible value of the line integral is:

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = f(B) - f(A) \le f_{\max} - f_{\min} = 1 - (-1) = 2$$

Thus, the maximum possible value of the line integral is 2.

3.3 Conclusion

The gradient vector field is:

$$\mathbf{F} = \nabla f(x, y) = (\cos(x)\cos(y), -\sin(x)\sin(y))$$

The maximum possible value of the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ as C ranges over all possible paths in the plane is:

$$\int_C \mathbf{F} \cdot d\mathbf{r} \le 2$$

Therefore, the maximum value is $\boxed{2}$.