Notes for 18.02 Recitation 16

18.02 Recitation MW9

Evan Chen

4 November 2024

You don't get to choose who Riley is. Anxiety, you need to let her go.

- Joy to Anxiety in Inside Out 2

This handout (and any other DLC's I write) are posted at https://web.evanchen.cc/1802.html.

§1 Announcements

- My LAMV notes should be basically complete up to midterm 3 now.
 - I encourage you to read Part Golf and Part Hotel up to 2D flux.
 - ▶ Section 16, "anti-gradient", is also relevant. It was retroactively added to Part Echo.
- I will have **extra office hours** today at
 - ▶ 3:30pm-4:00pm in 2-131
 - ▶ 4:00pm-5:00pm in 2-135.
- The **mock midterm 3** is scheduled for **Wed Nov 13, 6pm-8pm, in 1-190**. Email me if you want to try the problems early.

§2 Shorthands introduced thus far

In \mathbb{R}^2 , suppose $\mathbf{F}(x, y) = \binom{p(x, y)}{q(x, y)}$. Let path $\mathbf{r} : \mathbb{R} \to \mathbb{R}^n$ trace out a curve \mathcal{C} . All of the following notations mean the same thing:

$$\int_{t=\text{start time}}^{\text{stop time}} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \, \mathrm{d}t = \int_{\mathcal{C}} \mathbf{F} \cdot \mathrm{d}\mathbf{r} = \int_{\mathcal{C}} (p \, \mathrm{d}x + q \, \mathrm{d}y).$$

These are called the **work** of \mathbf{F} on \mathcal{C} , aka the **line integral**. The work is a scalar quantity (there is a dot product inside the integrand, so it returns a number).

§3 Computing line integrals in general

⅔ Recipe for computing line integrals in general

Suppose we want to evaluate $\int_{\mathcal{O}} \mathbf{F} \cdot d\mathbf{r}$.

- 1. First, check if the vector field is conservative by seeing if the curl is zero.
 - If so, don't bother parametrizing \mathcal{C} . Find a potential function f for the vector field \mathbf{F} and use the FTC as a shortcut.
- 2. Not yet covered in class: If \mathcal{C} is a closed loop in \mathbb{R}^2 , use Green's theorem instead.
- 3. If both of these fail, fall back the parametrization recipe.

Memorize: FTC for line integrals

Suppose $\mathbf{F} : \mathbb{R}^n \to \mathbb{R}^n$ is a conservative vector field, given by $\mathbf{F} = \nabla f$ for some potential function $f : \mathbb{R}^n \to \mathbb{R}$. Then for any curve \mathcal{C} from a point P to a point Q we have

$$\int_{\mathcal{C}} \mathbf{F} \cdot \mathrm{d}\mathbf{r} = f(Q) - f(P).$$

§4 Massive spoilers

I'm just gonna spoil the answers to all three of Maulik's questions from his notes:

1. Are all conservative fields gradients?

Answer: Heck yes! One fewer word to remember 🎉

2. Given F, how can we tell if it's a gradient?

Memorize: Conservative ⇔ 2D scalar curl is zero

Assume here the vector field is continuously differentiable and defined everywhere on \mathbb{R}^2 . A vector field $\mathbf{F} : \mathbb{R}^2 \to \mathbb{R}^2$ given by $\mathbf{F}(x, y) = \begin{pmatrix} p(x, y) \\ q(x, y) \end{pmatrix}$ is conservative if and only if

$$\frac{\partial q}{\partial x} = \frac{\partial p}{\partial y}$$

When $\mathbf{F} = \nabla f$, that condition is just saying $f_{xy} = f_{yx}$, which is something you already saw back when doing the second derivative test. If you like ∂ notation better, this could also be written as

$$\frac{\partial}{\partial y}\frac{\partial f}{\partial x} = \frac{\partial}{\partial x}\frac{\partial f}{\partial y}$$

3. If it is, how can we find a potential function?

Answer: read section 16 of LAMV for the recipe.

§5 Recitation questions from official course

- **1a** Sketch the vector field $\langle x, -y \rangle$ on the *xy*-plane. On the same picture, draw the oriented path *C* from (-1, 0) to (0, -1) given by the unit circle in the quadrant $x \le 0, y \le 0$.
- **1b** Using the picture as a guide, is $\int_C x \, dx y \, dy$ positive, negative, or zero?
- **1c** Using a parametrization of *C*, calculate the line integral $\int_C x \, dx y \, dy$ exactly.
- **1d** Find a function f(x, y) whose gradient is $\langle x, -y \rangle$, and use the fundamental theorem of calculus to calculate $\int_C x \, dx y \, dy$ in another way.
- **2a** Calculate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ where \mathbf{F} is the vector field $(x + y)\mathbf{i} + xy\mathbf{j}$ and C is the broken line running from (0,0) to (2,2) to (0,2).
- **2b** Calculate the line integral $\int_C (x^2 y) dx + 2x dy$ where *C* is the path from (-1, 0) to (1, 0) along the parabola $y = 1 x^2$.
- **3** Let $f(x, y) = \sin(x)\cos(y)$. Find the gradient vector field $\mathbf{F} = \nabla f(x, y)$. What is the maximum possible value of $\int_C \mathbf{F} \cdot d\mathbf{r}$ as *C* ranges over all possible paths in the plane?