Quick answer key to Recitation 14

ChatGPT 4o

Monday, 28 October 2024

Use the table of contents below to skip to a specific part without seeing spoilers to the other parts.

I just used ChatGPT to write this one quickly. ChatGPT can make mistakes, so if you spot anything that's wrong, flag me to ask.

Contents

1 Solution 1

We are given the iterated integral:

$$
\int_0^2 \int_{y/2}^1 e^{-x^2} \, dx \, dy.
$$

To simplify the evaluation, we will swap the order of integration.

1.1 Step 1: Determine the region of integration

The given bounds indicate that y ranges from 0 to 2 and, for each fixed y , x ranges from $y/2$ to 1. This region can be described by the inequalities:

$$
0 \le y \le 2
$$
 and $\frac{y}{2} \le x \le 1$.

To reverse the order of integration, we express y in terms of x .

1. From $x \ge y/2$, we get $y \le 2x$. 2. Since $y \le 2$, we have $x \le 1$.

Thus, the region can be described by $0\leq x\leq 1$ and $0\leq y\leq 2x.$

1.2 Step 2: Rewrite the integral with the new bounds

Swapping the order of integration, the integral becomes:

$$
\int_0^1 \int_0^{2x} e^{-x^2} \, dy \, dx.
$$

1.3 Step 3: Evaluate the inner integral

Since e^{-x^2} is independent of y, we can factor it out:

$$
\int_0^1 \int_0^{2x} e^{-x^2} dy dx = \int_0^1 e^{-x^2} \left(\int_0^{2x} 1 dy \right) dx.
$$

Now evaluate the inner integral with respect to y :

$$
\int_0^{2x} 1 \, dy = [y]_0^{2x} = 2x.
$$

Substituting back, we have:

$$
\int_0^1 \int_0^{2x} e^{-x^2} \, dy \, dx = \int_0^1 2xe^{-x^2} \, dx.
$$

1.4 Step 4: Evaluate the outer integral

Now we integrate with respect to x :

$$
\int_0^1 2xe^{-x^2} dx.
$$

Let $u = x^2$, so $du = 2x dx$. When $x = 0$, $u = 0$; and when $x = 1$, $u = 1$. The integral becomes:

$$
\int_0^1 e^{-x^2} \cdot 2x \, dx = \int_0^1 e^{-u} \, du.
$$

Now integrate with respect to u :

$$
\int_0^1 e^{-u} du = [-e^{-u}]_0^1 = -e^{-1} + e^0 = 1 - \frac{1}{e}.
$$

1.5 Conclusion

The value of the integral is:

$$
\int_0^2 \int_{y/2}^1 e^{-x^2} dx dy = 1 - \frac{1}{e} \approx 0.6321.
$$

2 Solution 2

We are tasked with evaluating the integral:

$$
\int \int_D \frac{dA}{3 + x^2 + y^2},
$$

where D is the region defined by $x \geq 0$, $y \geq 0$, and $x^2 + y^2 \leq 9$. This region corresponds to the first quadrant of a disk of radius 3 centered at the origin.

2.1 Step 1: Convert to polar coordinates

In polar coordinates, we have:

$$
x = r \cos \theta
$$
, $y = r \sin \theta$, and $dA = r dr d\theta$.

The expression $x^2 + y^2$ becomes r^2 , so the integrand simplifies to:

$$
\frac{1}{3+x^2+y^2} = \frac{1}{3+r^2}.
$$

2.2 Step 2: Set up the bounds in polar coordinates

The region D corresponds to $x \geq 0$, $y \geq 0$, and $x^2 + y^2 \leq 9$. In polar coordinates: - r ranges from 0 to 3 (since $x^2 + y^2 \le 9$ implies $r \le 3$). - θ ranges from 0 to $\frac{\pi}{2}$ (covering the first quadrant).

Thus, the integral becomes:

$$
\int \int_D \frac{dA}{3+x^2+y^2} = \int_0^{\pi/2} \int_0^3 \frac{r}{3+r^2} dr d\theta.
$$

2.3 Step 3: Evaluate the inner integral with respect to r

We first evaluate the inner integral:

$$
\int_0^3 \frac{r}{3+r^2} dr.
$$

To integrate this, we use the substitution $u = 3 + r^2$, so $du = 2r dr$ or $\frac{du}{2} = r dr$. When $r = 0$, $u = 3$; and when $r = 3$, $u = 12$. Thus, the integral becomes:

$$
\int_0^3 \frac{r}{3+r^2} dr = \int_3^{12} \frac{1}{u} \cdot \frac{du}{2} = \frac{1}{2} \int_3^{12} \frac{1}{u} du.
$$

Now integrate with respect to u:

$$
\frac{1}{2} \int_3^{12} \frac{1}{u} du = \frac{1}{2} \left[\ln |u| \right]_3^{12} = \frac{1}{2} \left(\ln(12) - \ln(3) \right).
$$

Using the property $\ln(a) - \ln(b) = \ln\left(\frac{a}{b}\right)$ $\frac{a}{b}$), we get:

$$
\frac{1}{2}(\ln(12) - \ln(3)) = \frac{1}{2}\ln\left(\frac{12}{3}\right) = \frac{1}{2}\ln(4) = \frac{1}{2}\cdot 2\ln(2) = \ln(2).
$$

So, the value of the inner integral is $ln(2)$.

2.4 Step 4: Evaluate the outer integral with respect to θ The outer integral is:

$$
\int_0^{\pi/2} \ln(2) \, d\theta = \ln(2) \int_0^{\pi/2} 1 \, d\theta = \ln(2) \cdot \frac{\pi}{2} = \frac{\pi}{2} \ln(2).
$$

2.5 Conclusion

The value of the integral is:

$$
\int \int_D \frac{dA}{3 + x^2 + y^2} = \frac{\pi}{2} \ln(2).
$$

3 Solution 3 (took like six tries for GPT to get this right and a lot of nudging)

We are given the density function $\delta(x, y) = \sqrt{x^2 + y^2}$ and the region defined by

$$
x^2 + (y - 1)^2 \le 1.
$$

This region is a disk of radius 1 centered at $(0, 1)$ in the xy-plane. We want to find the mass of the shape, which is given by:

$$
M = \iint_D \delta(x, y) dA = \iint_D \sqrt{x^2 + y^2} dA.
$$

3.1 Step 1: Convert to polar coordinates centered at the origin

In polar coordinates centered at $(0, 0)$, we have:

$$
x = r \cos \theta, \quad y = r \sin \theta,
$$

and the differential area element $dA = r dr d\theta$. The density function simplifies to:

$$
\delta(x, y) = \sqrt{x^2 + y^2} = r.
$$

3.2 Step 2: Determine the region D **in polar coordinates**

The region D is a disk of radius 1 centered at $(0, 1)$, which corresponds to all points (x, y) such that $x^2 + (y - 1)^2 \leq 1$.

In polar coordinates, this region \overrightarrow{D} can be described by:

$$
0 \le r \le 2\sin\theta, \quad 0 \le \theta \le \pi.
$$

This is because $r = 2 \sin \theta$ describes a circle of radius 1 centered at $(0, 1)$, and θ only goes from 0 to π to capture the upper half-plane where $y \ge 0$.

3.3 Step 3: Set up the integral for the mass

The mass M is given by:

$$
M = \int_0^{\pi} \int_0^{2\sin\theta} r \cdot r \, dr \, d\theta = \int_0^{\pi} \int_0^{2\sin\theta} r^2 \, dr \, d\theta.
$$

3.4 Step 4: Evaluate the inner integral with respect to r

We first integrate with respect to $r\mathrm{:}$

$$
\int_0^{2\sin\theta} r^2 dr = \left[\frac{r^3}{3}\right]_0^{2\sin\theta} = \frac{(2\sin\theta)^3}{3} = \frac{8\sin^3\theta}{3}.
$$

3.5 Step 5: Evaluate the outer integral with respect to θ

Now, we integrate with respect to θ :

$$
M = \int_0^{\pi} \frac{8\sin^3\theta}{3} d\theta = \frac{8}{3} \int_0^{\pi} \sin^3\theta d\theta.
$$

To evaluate $\int \sin^3 \theta \, d\theta$, we use the identity $\sin^3 \theta = \sin \theta \cdot (1 - \cos^2 \theta)$ and let $u = \cos \theta$, $du = -\sin \theta d\theta$:

$$
\int \sin^3 \theta \, d\theta = \int (1 - u^2)(-du) = \int (u^2 - 1) \, du = \left[\frac{u^3}{3} - u\right]_1^{-1}.
$$

Evaluating this from $\theta = 0$ to π , we get:

$$
\int_0^\pi \sin^3 \theta \, d\theta = \frac{4}{3}.
$$

Thus, the mass M is:

$$
M = \frac{8}{3} \cdot \frac{4}{3} = \frac{32}{9}.
$$

3.6 Conclusion

The mass of the shape is:

4 Solution 4

We are tasked with evaluating the integral:

$$
\int \int_D \frac{dA}{\sqrt{1 - x^2 - y^2}},
$$

where D is the region defined by $x \geq 0$ and $x^2 + (y - \frac{1}{2})$ $(\frac{1}{2})^2 \leq \frac{1}{4}$ $\frac{1}{4}$. This region is a semicircular disk of radius $\frac{1}{2}$ centered at $(0, \frac{1}{2})$ $(\frac{1}{2})$ in the first quadrant.

4.1 Step 1: Interpret the region D

The inequality $x^2 + (y - \frac{1}{2})$ $(\frac{1}{2})^2 \leq \frac{1}{4}$ $\frac{1}{4}$ describes a disk of radius $\frac{1}{2}$ centered at $(0, \frac{1}{2})$ $\frac{1}{2}$). Since $x \geq 0$, we are only considering the right half of this disk, which lies in the first quadrant.

4.2 Step 2: Convert to polar coordinates

To simplify the integral, we use polar coordinates centered at the origin. In polar coordinates, we have:

$$
x = r\cos\theta, \quad y = r\sin\theta,
$$

and the differential area element $dA = r dr d\theta$.

In these coordinates, the integrand $\frac{1}{\sqrt{1-x}}$ $\frac{1}{1-x^2-y^2}$ becomes:

$$
\frac{1}{\sqrt{1-x^2-y^2}} = \frac{1}{\sqrt{1-r^2}}.
$$

4.3 Step 3: Determine the limits for r and θ

Since the region D is a semicircular disk of radius $\frac{1}{2}$ in the first quadrant, we have: $-r$ ranges from 0 to $\frac{1}{2}$, $-\theta$ ranges from 0 to π .

4.4 Step 4: Set up the integral

Substituting into the integral, we get:

$$
\int \int_D \frac{dA}{\sqrt{1 - x^2 - y^2}} = \int_0^{\pi} \int_0^{1/2} \frac{r}{\sqrt{1 - r^2}} dr d\theta.
$$

4.5 Step 5: Evaluate the inner integral with respect to r

We first evaluate the inner integral:

$$
\int_0^{1/2} \frac{r}{\sqrt{1 - r^2}} dr.
$$

To integrate this, we use the substitution $u = 1 - r^2$, so $du = -2r dr$ or $\frac{-du}{2} = r dr$. When $r = 0$, $u = 1$; and when $r = \frac{1}{2}$ $\frac{1}{2}$, $u = \frac{3}{4}$ $\frac{3}{4}$. Thus, the integral becomes:

$$
\int_0^{1/2} \frac{r}{\sqrt{1-r^2}} dr = \int_1^{3/4} \frac{-1}{2\sqrt{u}} du = -\frac{1}{2} \int_1^{3/4} u^{-1/2} du.
$$

Now integrate with respect to u :

$$
-\frac{1}{2}\int_{1}^{3/4}u^{-1/2} du = -\frac{1}{2}\left[2\sqrt{u}\right]_{1}^{3/4} = -\sqrt{u}\Big|_{1}^{3/4}.
$$

Evaluating this, we get:

$$
-\sqrt{\frac{3}{4}} + \sqrt{1} = -\frac{\sqrt{3}}{2} + 1 = 1 - \frac{\sqrt{3}}{2}.
$$

4.6 Step 6: Evaluate the outer integral with respect to θ The outer integral is:

$$
\int_0^{\pi} \left(1 - \frac{\sqrt{3}}{2}\right) d\theta = \left(1 - \frac{\sqrt{3}}{2}\right) \int_0^{\pi} 1 d\theta = \left(1 - \frac{\sqrt{3}}{2}\right) \cdot \pi.
$$

4.7 Conclusion

The value of the integral is:

$$
\int \int_D \frac{dA}{\sqrt{1-x^2-y^2}} = \pi \left(1 - \frac{\sqrt{3}}{2}\right).
$$