Quick answer key to Recitation 14

ChatGPT 40

Monday, 28 October 2024

Use the table of contents below to skip to a specific part without seeing spoilers to the other parts.

I just used ChatGPT to write this one quickly. ChatGPT can make mistakes, so if you spot anything that's wrong, flag me to ask.

Contents

1	Solu	ation 1	2			
	1.1	Step 1: Determine the region of integration	3			
	1.2	Step 2: Rewrite the integral with the new bounds	4			
	1.3	Step 3: Evaluate the inner integral	5			
	1.4	Step 4: Evaluate the outer integral	6			
	1.5	Conclusion	7			
2	Solu	ation 2	8			
	2.1	Step 1: Convert to polar coordinates	9			
	2.2	Step 2: Set up the bounds in polar coordinates	10			
	2.3	Step 3: Evaluate the inner integral with respect to r	11			
	2.4	Step 4: Evaluate the outer integral with respect to θ	12			
	2.5	Conclusion	13			
3	Solution 3 (took like six tries for GPT to get this right and					
	a lot of nudging)					
	3.1	Step 1: Convert to polar coordinates centered at the origin	15			
	3.2	Step 2: Determine the region D in polar coordinates \ldots	16			
	3.3	Step 3: Set up the integral for the mass	17			
	3.4	Step 4: Evaluate the inner integral with respect to r	18			
	3.5	Step 5: Evaluate the outer integral with respect to θ	19			
	3.6	Conclusion	20			

4	Solution 4			
	4.1	Step 1: Interpret the region D	22	
	4.2	Step 2: Convert to polar coordinates	23	
	4.3	Step 3: Determine the limits for r and θ	24	
	4.4	Step 4: Set up the integral	25	
	4.5	Step 5: Evaluate the inner integral with respect to r	26	
	4.6	Step 6: Evaluate the outer integral with respect to θ	27	
	4.7	Conclusion	28	

1 Solution 1

We are given the iterated integral:

$$\int_0^2 \int_{y/2}^1 e^{-x^2} \, dx \, dy.$$

To simplify the evaluation, we will swap the order of integration.

1.1 Step 1: Determine the region of integration

The given bounds indicate that y ranges from 0 to 2 and, for each fixed y, x ranges from y/2 to 1. This region can be described by the inequalities:

$$0 \le y \le 2$$
 and $\frac{y}{2} \le x \le 1$.

To reverse the order of integration, we express y in terms of x.

1. From $x \ge y/2$, we get $y \le 2x$. 2. Since $y \le 2$, we have $x \le 1$.

Thus, the region can be described by $0 \le x \le 1$ and $0 \le y \le 2x$.

1.2 Step 2: Rewrite the integral with the new bounds

Swapping the order of integration, the integral becomes:

$$\int_0^1 \int_0^{2x} e^{-x^2} \, dy \, dx.$$

1.3 Step 3: Evaluate the inner integral

Since e^{-x^2} is independent of y, we can factor it out:

$$\int_0^1 \int_0^{2x} e^{-x^2} \, dy \, dx = \int_0^1 e^{-x^2} \left(\int_0^{2x} 1 \, dy \right) dx.$$

Now evaluate the inner integral with respect to y:

$$\int_0^{2x} 1 \, dy = [y]_0^{2x} = 2x.$$

Substituting back, we have:

$$\int_0^1 \int_0^{2x} e^{-x^2} \, dy \, dx = \int_0^1 2x e^{-x^2} \, dx.$$

1.4 Step 4: Evaluate the outer integral

Now we integrate with respect to x:

$$\int_0^1 2x e^{-x^2} \, dx$$

Let $u = x^2$, so du = 2x dx. When x = 0, u = 0; and when x = 1, u = 1. The integral becomes:

$$\int_0^1 e^{-x^2} \cdot 2x \, dx = \int_0^1 e^{-u} \, du.$$

Now integrate with respect to u:

$$\int_0^1 e^{-u} \, du = [-e^{-u}]_0^1 = -e^{-1} + e^0 = 1 - \frac{1}{e}.$$

1.5 Conclusion

The value of the integral is:

$$\int_0^2 \int_{y/2}^1 e^{-x^2} \, dx \, dy = 1 - \frac{1}{e} \approx 0.6321.$$

2 Solution 2

We are tasked with evaluating the integral:

$$\int \int_D \frac{dA}{3+x^2+y^2},$$

where D is the region defined by $x \ge 0$, $y \ge 0$, and $x^2 + y^2 \le 9$. This region corresponds to the first quadrant of a disk of radius 3 centered at the origin.

2.1 Step 1: Convert to polar coordinates

In polar coordinates, we have:

$$x = r \cos \theta$$
, $y = r \sin \theta$, and $dA = r dr d\theta$.

The expression $x^2 + y^2$ becomes r^2 , so the integrand simplifies to:

$$\frac{1}{3+x^2+y^2} = \frac{1}{3+r^2}.$$

Step 2: Set up the bounds in polar coordinates 2.2

The region D corresponds to $x \ge 0$, $y \ge 0$, and $x^2 + y^2 \le 9$. In polar coordinates: - r ranges from 0 to 3 (since $x^2 + y^2 \le 9$ implies $r \le 3$). - θ ranges from 0 to $\frac{\pi}{2}$ (covering the first quadrant). Thus, the integral becomes:

$$\int \int_D \frac{dA}{3+x^2+y^2} = \int_0^{\pi/2} \int_0^3 \frac{r}{3+r^2} \, dr \, d\theta.$$

2.3 Step 3: Evaluate the inner integral with respect to r

We first evaluate the inner integral:

$$\int_0^3 \frac{r}{3+r^2} \, dr$$

To integrate this, we use the substitution $u = 3 + r^2$, so du = 2r dr or $\frac{du}{2} = r dr$. When r = 0, u = 3; and when r = 3, u = 12. Thus, the integral becomes:

$$\int_0^3 \frac{r}{3+r^2} \, dr = \int_3^{12} \frac{1}{u} \cdot \frac{du}{2} = \frac{1}{2} \int_3^{12} \frac{1}{u} \, du.$$

Now integrate with respect to u:

$$\frac{1}{2} \int_{3}^{12} \frac{1}{u} \, du = \frac{1}{2} \left[\ln |u| \right]_{3}^{12} = \frac{1}{2} \left(\ln(12) - \ln(3) \right).$$

Using the property $\ln(a) - \ln(b) = \ln\left(\frac{a}{b}\right)$, we get:

$$\frac{1}{2}\left(\ln(12) - \ln(3)\right) = \frac{1}{2}\ln\left(\frac{12}{3}\right) = \frac{1}{2}\ln(4) = \frac{1}{2} \cdot 2\ln(2) = \ln(2).$$

So, the value of the inner integral is $\ln(2)$.

2.4 Step 4: Evaluate the outer integral with respect to θ The outer integral is:

$$\int_0^{\pi/2} \ln(2) \, d\theta = \ln(2) \int_0^{\pi/2} 1 \, d\theta = \ln(2) \cdot \frac{\pi}{2} = \frac{\pi}{2} \ln(2).$$

2.5 Conclusion

The value of the integral is:

$$\int \int_D \frac{dA}{3 + x^2 + y^2} = \frac{\pi}{2} \ln(2).$$

3 Solution 3 (took like six tries for GPT to get this right and a lot of nudging)

We are given the density function $\delta(x,y)=\sqrt{x^2+y^2}$ and the region defined by

$$x^2 + (y-1)^2 \le 1.$$

This region is a disk of radius 1 centered at (0, 1) in the *xy*-plane. We want to find the mass of the shape, which is given by:

$$M = \iint_D \delta(x, y) \, dA = \iint_D \sqrt{x^2 + y^2} \, dA.$$

3.1 Step 1: Convert to polar coordinates centered at the origin

In polar coordinates centered at (0,0), we have:

$$x = r\cos\theta, \quad y = r\sin\theta,$$

and the differential area element $dA = r \, dr \, d\theta$. The density function simplifies to:

$$\delta(x,y) = \sqrt{x^2 + y^2} = r.$$

3.2 Step 2: Determine the region *D* in polar coordinates

The region D is a disk of radius 1 centered at (0, 1), which corresponds to all points (x, y) such that $x^2 + (y - 1)^2 \le 1$.

In polar coordinates, this region D can be described by:

$$0 \le r \le 2\sin\theta, \quad 0 \le \theta \le \pi.$$

This is because $r = 2\sin\theta$ describes a circle of radius 1 centered at (0, 1), and θ only goes from 0 to π to capture the upper half-plane where $y \ge 0$.

3.3 Step 3: Set up the integral for the mass

The mass M is given by:

$$M = \int_0^\pi \int_0^{2\sin\theta} r \cdot r \, dr \, d\theta = \int_0^\pi \int_0^{2\sin\theta} r^2 \, dr \, d\theta.$$

3.4 Step 4: Evaluate the inner integral with respect to r

We first integrate with respect to r:

$$\int_0^{2\sin\theta} r^2 \, dr = \left[\frac{r^3}{3}\right]_0^{2\sin\theta} = \frac{(2\sin\theta)^3}{3} = \frac{8\sin^3\theta}{3}.$$

3.5 Step 5: Evaluate the outer integral with respect to θ

Now, we integrate with respect to $\theta :$

$$M = \int_0^\pi \frac{8\sin^3\theta}{3} \, d\theta = \frac{8}{3} \int_0^\pi \sin^3\theta \, d\theta.$$

To evaluate $\int \sin^3 \theta \, d\theta$, we use the identity $\sin^3 \theta = \sin \theta \cdot (1 - \cos^2 \theta)$ and let $u = \cos \theta$, $du = -\sin \theta \, d\theta$:

$$\int \sin^3 \theta \, d\theta = \int (1 - u^2)(-du) = \int (u^2 - 1) \, du = \left[\frac{u^3}{3} - u\right]_1^{-1}.$$

Evaluating this from $\theta = 0$ to π , we get:

$$\int_0^\pi \sin^3\theta \, d\theta = \frac{4}{3}.$$

Thus, the mass M is:

$$M = \frac{8}{3} \cdot \frac{4}{3} = \frac{32}{9}.$$

3.6 Conclusion

The mass of the shape is:

32	
9	•

4 Solution 4

We are tasked with evaluating the integral:

$$\int \int_D \frac{dA}{\sqrt{1-x^2-y^2}},$$

where D is the region defined by $x \ge 0$ and $x^2 + (y - \frac{1}{2})^2 \le \frac{1}{4}$. This region is a semicircular disk of radius $\frac{1}{2}$ centered at $(0, \frac{1}{2})$ in the first quadrant.

4.1 Step 1: Interpret the region D

The inequality $x^2 + (y - \frac{1}{2})^2 \leq \frac{1}{4}$ describes a disk of radius $\frac{1}{2}$ centered at $(0, \frac{1}{2})$. Since $x \geq 0$, we are only considering the right half of this disk, which lies in the first quadrant.

Step 2: Convert to polar coordinates 4.2

To simplify the integral, we use polar coordinates centered at the origin. In polar coordinates, we have:

$$x = r\cos\theta, \quad y = r\sin\theta,$$

and the differential area element $dA = r \, dr \, d\theta$. In these coordinates, the integrand $\frac{1}{\sqrt{1-x^2-y^2}}$ becomes:

$$\frac{1}{\sqrt{1-x^2-y^2}} = \frac{1}{\sqrt{1-r^2}}.$$

4.3 Step 3: Determine the limits for r and θ

Since the region D is a semicircular disk of radius $\frac{1}{2}$ in the first quadrant, we have: - r ranges from 0 to $\frac{1}{2}$, - θ ranges from 0 to π .

4.4 Step 4: Set up the integral

Substituting into the integral, we get:

$$\int \int_D \frac{dA}{\sqrt{1-x^2-y^2}} = \int_0^\pi \int_0^{1/2} \frac{r}{\sqrt{1-r^2}} \, dr \, d\theta.$$

4.5 Step 5: Evaluate the inner integral with respect to r

We first evaluate the inner integral:

$$\int_0^{1/2} \frac{r}{\sqrt{1-r^2}} \, dr.$$

To integrate this, we use the substitution $u = 1 - r^2$, so du = -2r dr or $\frac{-du}{2} = r dr$. When r = 0, u = 1; and when $r = \frac{1}{2}$, $u = \frac{3}{4}$. Thus, the integral becomes:

$$\int_0^{1/2} \frac{r}{\sqrt{1-r^2}} \, dr = \int_1^{3/4} \frac{-1}{2\sqrt{u}} \, du = -\frac{1}{2} \int_1^{3/4} u^{-1/2} \, du.$$

Now integrate with respect to u:

$$-\frac{1}{2}\int_{1}^{3/4} u^{-1/2} \, du = -\frac{1}{2} \left[2\sqrt{u} \right]_{1}^{3/4} = -\sqrt{u} \Big|_{1}^{3/4}.$$

Evaluating this, we get:

$$-\sqrt{\frac{3}{4}} + \sqrt{1} = -\frac{\sqrt{3}}{2} + 1 = 1 - \frac{\sqrt{3}}{2}.$$

4.6 Step 6: Evaluate the outer integral with respect to θ The outer integral is:

$$\int_0^\pi \left(1 - \frac{\sqrt{3}}{2}\right) d\theta = \left(1 - \frac{\sqrt{3}}{2}\right) \int_0^\pi 1 \, d\theta = \left(1 - \frac{\sqrt{3}}{2}\right) \cdot \pi.$$

4.7 Conclusion

The value of the integral is:

$$\int \int_D \frac{dA}{\sqrt{1-x^2-y^2}} = \pi \left(1-\frac{\sqrt{3}}{2}\right).$$