Quick answer key to R12

ChatGPT 40

16 October 2024

Use the table of contents below to skip to a specific part without seeing spoilers to the other parts.

I just used ChatGPT to write this one quickly. ChatGPT can make mistakes, so if you spot anything that's wrong, flag me to ask.

Contents

1	Solı	ution	3
	1.1	Step 1: Find the critical points	4
	1.2	Step 2: Solve the system of equations	5
	1.3	Step 3: Use the second derivative test to classify the critical	
		points	6
		1.3.1 At $(0,0)$:	7
		1.3.2 At $(1,1)$:	8
	1.4	Conclusion	9
2	Solu	ation	10
	2.1	Step 1: Analyze the constraint and region	11
	2.2	Step 2: Use the method of Lagrange multipliers	12
	2.3	Step 4: Evaluate the values	14
	2.4	Step 5: Conclusion	15
3	Solu	ution	16
4	Solı	ation	17
	4.1	Step 1: Set up the Lagrangian	18
	4.2	Step 2: Compute the partial derivatives	19
	4.3	Step 3: Solve the system of equations	20
		4.3.1 Case 1: $y = 0$	21
		4.3.2 Case 2: $z = 0$	22

4.4	Step 4: Evaluate $f(x, y, z)$ at critical points	23
4.5	Step 5: Determine the maximum and minimum values	24
4.6	Conclusion	25

1 Solution

We are given the function:

$$f(x,y) = x^3 - 3xy + y^3.$$

We are tasked with finding the critical points and using the second derivative test to classify them.

1.1 Step 1: Find the critical points

To find the critical points, we first compute the partial derivatives of f(x, y) with respect to x and y.

Partial derivative with respect to x:

$$f_x = \frac{\partial}{\partial x} \left(x^3 - 3xy + y^3 \right) = 3x^2 - 3y.$$

Partial derivative with respect to y:

$$f_y = \frac{\partial}{\partial y} \left(x^3 - 3xy + y^3 \right) = -3x + 3y^2.$$

We set both partial derivatives equal to zero to find the critical points:

$$f_x = 3x^2 - 3y = 0 \quad \Rightarrow \quad x^2 = y.$$

$$f_y = -3x + 3y^2 = 0 \quad \Rightarrow \quad x = y^2.$$

1.2 Step 2: Solve the system of equations

We substitute $y = x^2$ (from $x^2 = y$) into the equation $x = y^2$ to find the values of x and y.

Substitute $y = x^2$ into $x = y^2$:

$$x = (x^2)^2 = x^4.$$

Solve for x:

$$x^4 - x = 0 \quad \Rightarrow \quad x(x^3 - 1) = 0.$$

Thus, x = 0 or x = 1.

Case 1: x = 0 Substitute x = 0 into $y = x^2$:

$$y = 0^2 = 0.$$

Thus, (0,0) is a critical point.

Case 2: x = 1 Substitute x = 1 into $y = x^2$:

$$y = 1^2 = 1.$$

Thus, (1, 1) is another critical point.

In summary, the critical points are (0,0) and (1,1).

1.3 Step 3: Use the second derivative test to classify the critical points

To classify the critical points, we use the second derivative test. First, compute the second partial derivatives of f(x, y).

Second partial derivatives:

$$f_{xx} = \frac{\partial}{\partial x} \left(3x^2 - 3y \right) = 6x,$$

$$f_{yy} = \frac{\partial}{\partial y} \left(-3x + 3y^2 \right) = 6y,$$

$$f_{xy} = \frac{\partial}{\partial y} \left(3x^2 - 3y \right) = -3.$$

The second derivative test is based on the Hessian determinant H, which is given by:

$$H = f_{xx}f_{yy} - (f_{xy})^2.$$

We evaluate H at each critical point.

1.3.1 At (0,0):

At (0,0), the second partial derivatives are:

$$f_{xx}(0,0) = 6(0) = 0, \quad f_{yy}(0,0) = 6(0) = 0, \quad f_{xy}(0,0) = -3.$$

The Hessian determinant is:

$$H(0,0) = (0)(0) - (-3)^2 = -9.$$

Since H(0,0) < 0, the point (0,0) is a **saddle point**.

1.3.2 At (1,1):

At (1, 1), the second partial derivatives are:

$$f_{xx}(1,1) = 6(1) = 6, \quad f_{yy}(1,1) = 6(1) = 6, \quad f_{xy}(1,1) = -3.$$

The Hessian determinant is:

$$H(1,1) = (6)(6) - (-3)^2 = 36 - 9 = 27.$$

Since H(1,1) > 0 and $f_{xx}(1,1) > 0$, the point (1,1) is a **local minimum**.

1.4 Conclusion

The critical points of the function $f(x,y) = x^3 - 3xy + y^3$ are (0,0) and (1,1). Using the second derivative test: - The point (0,0) is a **saddle point**. - The point (1,1) is a **local minimum**.

2 Solution

We are tasked with finding the maximum and minimum values of the function:

$$f(x,y) = x^3 + y^3$$

on the region defined by the constraint:

$$x^2 + 2y^2 \le 36.$$

This region is an ellipse centered at the origin.

2.1 Step 1: Analyze the constraint and region

The region defined by $x^2 + 2y^2 \le 36$ is an ellipse. To parameterize the boundary, we rewrite the equation of the ellipse as:

$$\frac{x^2}{36} + \frac{y^2}{18} = 1.$$

Thus, the semi-major axis is along the x-axis with length 6, and the semiminor axis is along the y-axis with length $\sqrt{18} \approx 4.24$.

2.2 Step 2: Use the method of Lagrange multipliers

To find the maximum and minimum values of $f(x,y) = x^3 + y^3$ on the boundary of the region, we use the method of Lagrange multipliers. The constraint function is:

$$g(x,y) = x^2 + 2y^2 - 36 = 0.$$

The gradients of f and g are:

$$abla f(x,y) = \left\langle 3x^2, 3y^2 \right\rangle,$$

 $abla g(x,y) = \left\langle 2x, 4y \right\rangle.$

According to the method of Lagrange multipliers, we must have:

$$\nabla f(x,y) = \lambda \nabla g(x,y).$$

This gives the system of equations:

$$3x^2 = \lambda(2x),$$
$$3y^2 = \lambda(4y).$$

Case 1: x = 0 Substitute x = 0 into the constraint $x^2 + 2y^2 = 36$:

$$0^2 + 2y^2 = 36 \quad \Rightarrow \quad y^2 = 18 \quad \Rightarrow \quad y = \pm\sqrt{18} = \pm 3\sqrt{2}$$

At $(0, 3\sqrt{2})$ and $(0, -3\sqrt{2})$, the function f(x, y) becomes:

$$f(0, 3\sqrt{2}) = 0^3 + (3\sqrt{2})^3 = 0 + 54\sqrt{2},$$

$$f(0, -3\sqrt{2}) = 0^3 + (-3\sqrt{2})^3 = 0 - 54\sqrt{2}.$$

Case 2: y = 0 Substitute y = 0 into the constraint $x^2 + 2y^2 = 36$:

$$x^2 + 0^2 = 36 \quad \Rightarrow \quad x^2 = 36 \quad \Rightarrow \quad x = \pm 6.$$

At (6,0) and (-6,0), the function f(x,y) becomes:

$$f(6,0) = 6^3 + 0^3 = 216,$$

 $f(-6,0) = (-6)^3 + 0^3 = -216.$

Case 3: $x \neq 0$ and $y \neq 0$ For $x \neq 0$ and $y \neq 0$, we can solve for λ from the Lagrange multiplier equations:

$$\begin{aligned} &3x^2 = \lambda(2x) \quad \Rightarrow \quad \lambda = \frac{3x}{2}, \\ &3y^2 = \lambda(4y) \quad \Rightarrow \quad \lambda = \frac{3y^2}{4y} = \frac{3y}{4}. \end{aligned}$$

Equating the two expressions for λ :

$$\frac{3x}{2} = \frac{3y}{4} \quad \Rightarrow \quad 4x = 2y \quad \Rightarrow \quad y = 2x.$$

Substitute y = 2x into the constraint $x^2 + 2y^2 = 36$:

$$x^{2}+2(2x)^{2} = 36 \quad \Rightarrow \quad x^{2}+8x^{2} = 36 \quad \Rightarrow \quad 9x^{2} = 36 \quad \Rightarrow \quad x^{2} = 4 \quad \Rightarrow \quad x = \pm 2x^{2}$$

When x = 2, y = 4, and when x = -2, y = -4. At (2, 4) and (-2, -4), the function f(x, y) becomes:

$$f(2,4) = 2^3 + 4^3 = 8 + 64 = 72,$$

 $f(-2,-4) = (-2)^3 + (-4)^3 = -8 - 64 = -72.$

2.3 Step 4: Evaluate the values

We summarize the values of f(x, y) at the critical points: - f(6,0) = 216 - f(-6,0) = -216 - $f(0, 3\sqrt{2}) = 54\sqrt{2} \approx 76.37$ $f(0, -3\sqrt{2}) = -54\sqrt{2} \approx -76.37$ - f(2,4) = 72 - f(-2, -4) = -72

2.4 Step 5: Conclusion

The **global maximum** value of f(x, y) on the region $x^2 + 2y^2 \le 36$ is:

$$f_{\rm max} = 216$$
 at $(6, 0)$.

The **global minimum ** value of f(x, y) on the region $x^2 + 2y^2 \le 36$ is:

 $f_{\min} = -216$ at (-6, 0).

3 Solution

ChatGPT go this wrong. Kappa.

4 Solution

We are tasked with finding the maximum and minimum values of the function:

$$f(x, y, z) = x^2 + x + 3y^2 + 2z^2$$

subject to the constraint:

$$g(x, y, z) = x^{2} + y^{2} + z^{2} - 1 = 0.$$

4.1 Step 1: Set up the Lagrangian

We use the method of Lagrange multipliers by defining the Lagrangian function:

$$\mathcal{L}(x, y, z, \lambda) = x^2 + x + 3y^2 + 2z^2 - \lambda(x^2 + y^2 + z^2 - 1).$$

4.2 Step 2: Compute the partial derivatives

Compute the partial derivatives of \mathcal{L} with respect to x, y, z, and λ :

$$\frac{\partial \mathcal{L}}{\partial x} = 2x + 1 - 2\lambda x = 0,$$
$$\frac{\partial \mathcal{L}}{\partial y} = 6y - 2\lambda y = 0,$$
$$\frac{\partial \mathcal{L}}{\partial z} = 4z - 2\lambda z = 0,$$
$$\frac{\partial \mathcal{L}}{\partial \lambda} = -(x^2 + y^2 + z^2 - 1) = 0.$$

4.3 Step 3: Solve the system of equations

We have the following system:

$$2x + 1 - 2\lambda x = 0 \quad (1) \tag{1}$$

$$6y - 2\lambda y = 0 \quad (2) \tag{2}$$

$$4z - 2\lambda z = 0 \quad (3) \tag{3}$$

$$x^2 + y^2 + z^2 = 1 \quad (4) \tag{4}$$

From Equation (2): Either y = 0 or $6 - 2\lambda = 0$. If $y \neq 0$, then: $6 - 2\lambda = 0 \implies \lambda = 3$.

From Equation (3): Either z = 0 or $4 - 2\lambda = 0$. If $z \neq 0$, then: $4 - 2\lambda = 0 \Rightarrow \lambda = 2$.

Since λ cannot be both 3 and 2, we consider the cases where either y = 0 or z = 0.

4.3.1 Case 1: y = 0

From Equation (3):

$$4z - 2\lambda z = 0 \quad \Rightarrow \quad z(4 - 2\lambda) = 0.$$

Subcase 1.1: z = 0Then from Equation (1):

$$2x + 1 - 2\lambda x = 0 \quad \Rightarrow \quad 2x(1 - \lambda) + 1 = 0.$$

Subcase 1.1.1: Solve for x If $x \neq 0$, then:

$$2x(1-\lambda) + 1 = 0 \quad \Rightarrow \quad x = \frac{-1}{2(1-\lambda)}.$$

But since $x^2 + y^2 + z^2 = 1$ and y = 0, z = 0, we have:

$$x^2 = 1 \quad \Rightarrow \quad x = \pm 1.$$

Subcase 1.1.2: Find λ for $x = \pm 1$ For x = 1:

$$2(1) + 1 - 2\lambda(1) = 0 \quad \Rightarrow \quad 2 + 1 - 2\lambda = 0 \quad \Rightarrow \quad \lambda = \frac{3}{2}$$

For x = -1:

$$2(-1) + 1 - 2\lambda(-1) = 0 \quad \Rightarrow \quad -2 + 1 + 2\lambda = 0 \quad \Rightarrow \quad \lambda = \frac{1}{2}.$$

Subcase 1.2: $z \neq 0$ Then $4 - 2\lambda = 0 \implies \lambda = 2$. From Equation (1):

$$2x + 1 - 4x = 0 \quad \Rightarrow \quad -2x + 1 = 0 \quad \Rightarrow \quad x = \frac{1}{2}.$$

From Equation (4):

$$\left(\frac{1}{2}\right)^2 + 0 + z^2 = 1 \quad \Rightarrow \quad z^2 = \frac{3}{4} \quad \Rightarrow \quad z = \pm \frac{\sqrt{3}}{2}.$$

4.3.2 Case 2: z = 0Similarly, we find $y = \pm \frac{\sqrt{15}}{4}$ and $x = \frac{1}{4}$. 4.4 Step 4: Evaluate f(x, y, z) at critical points Point 1: (x, y, z) = (1, 0, 0)

$$f(1,0,0) = (1)^2 + 1 + 0 + 0 = 2.$$

Point 2: (x, y, z) = (-1, 0, 0)

$$f(-1,0,0) = (-1)^2 + (-1) + 0 + 0 = 1 - 1 = 0.$$

Point 3: $\left(\frac{1}{2}, 0, \pm \frac{\sqrt{3}}{2}\right)$

$$f\left(\frac{1}{2},0,\pm\frac{\sqrt{3}}{2}\right) = \left(\frac{1}{2}\right)^2 + \frac{1}{2} + 0 + 2\left(\frac{\sqrt{3}}{2}\right)^2 = \frac{1}{4} + \frac{1}{2} + 0 + \frac{3}{2} = \frac{9}{4} = 2.25.$$

Point 4: $\left(\frac{1}{4}, \pm \frac{\sqrt{15}}{4}, 0\right)$

$$f\left(\frac{1}{4},\pm\frac{\sqrt{15}}{4},0\right) = \left(\frac{1}{4}\right)^2 + \frac{1}{4} + 3\left(\frac{\sqrt{15}}{4}\right)^2 + 0 = \frac{1}{16} + \frac{1}{4} + 3\left(\frac{15}{16}\right) = \frac{1}{16} + \frac{1}{4} + \frac{45}{16} = \frac{50}{16} = \frac{25}{8} = 3.125.$$

4.5 Step 5: Determine the maximum and minimum values

From the evaluations, we have:

•
$$f_{\text{max}} = \frac{25}{8} = 3.125 \text{ at } \left(\frac{1}{4}, \pm \frac{\sqrt{15}}{4}, 0\right).$$

• $f_{\min} = 0$ at (-1, 0, 0).

4.6 Conclusion

The maximum value of f(x, y, z) on the unit sphere is $\frac{25}{8}$ at the points $\left(\frac{1}{4}, \pm \frac{\sqrt{15}}{4}, 0\right)$. The minimum value is 0 at the point (-1, 0, 0).