Quick answer key to R12

ChatGPT 4o

16 October 2024

Use the table of contents below to skip to a specific part without seeing spoilers to the other parts.

I just used ChatGPT to write this one quickly. ChatGPT can make mistakes, so if you spot anything that's wrong, flag me to ask.

Contents

1 Solution

We are given the function:

$$
f(x,y) = x^3 - 3xy + y^3.
$$

We are tasked with finding the critical points and using the second derivative test to classify them.

1.1 Step 1: Find the critical points

To find the critical points, we first compute the partial derivatives of $f(x, y)$ with respect to x and y .

Partial derivative with respect to x**:**

$$
f_x = \frac{\partial}{\partial x} \left(x^3 - 3xy + y^3 \right) = 3x^2 - 3y.
$$

Partial derivative with respect to y**:**

$$
f_y = \frac{\partial}{\partial y} (x^3 - 3xy + y^3) = -3x + 3y^2.
$$

We set both partial derivatives equal to zero to find the critical points:

$$
f_x = 3x^2 - 3y = 0 \Rightarrow x^2 = y.
$$

$$
f_y = -3x + 3y^2 = 0 \Rightarrow x = y^2.
$$

1.2 Step 2: Solve the system of equations

We substitute $y = x^2$ (from $x^2 = y$) into the equation $x = y^2$ to find the values of x and y .

Substitute $y = x^2$ into $x = y^2$.

$$
x = (x^2)^2 = x^4.
$$

Solve for x:

$$
x^4 - x = 0 \quad \Rightarrow \quad x(x^3 - 1) = 0.
$$

Thus, $x = 0$ or $x = 1$.

Case 1: $x = 0$ Substitute $x = 0$ into $y = x^2$.

$$
y = 0^2 = 0.
$$

Thus, $(0, 0)$ is a critical point.

Case 2: $x = 1$ Substitute $x = 1$ into $y = x^2$.

$$
y = 1^2 = 1.
$$

Thus, (1, 1) is another critical point.

In summary, the critical points are $(0,0)$ and $(1,1)$.

1.3 Step 3: Use the second derivative test to classify the critical points

To classify the critical points, we use the second derivative test. First, compute the second partial derivatives of $f(x, y)$.

Second partial derivatives:

$$
f_{xx} = \frac{\partial}{\partial x} (3x^2 - 3y) = 6x,
$$

\n
$$
f_{yy} = \frac{\partial}{\partial y} (-3x + 3y^2) = 6y,
$$

\n
$$
f_{xy} = \frac{\partial}{\partial y} (3x^2 - 3y) = -3.
$$

The second derivative test is based on the Hessian determinant H , which is given by: Ω

$$
H = f_{xx}f_{yy} - (f_{xy})^2.
$$

We evaluate H at each critical point.

1.3.1 At (0, 0)**:**

At $(0, 0)$, the second partial derivatives are:

$$
f_{xx}(0,0) = 6(0) = 0
$$
, $f_{yy}(0,0) = 6(0) = 0$, $f_{xy}(0,0) = -3$.

The Hessian determinant is:

$$
H(0,0) = (0)(0) - (-3)^2 = -9.
$$

Since $H(0,0) < 0$, the point $(0,0)$ is a **saddle point**.

1.3.2 At (1, 1)**:**

At $(1, 1)$, the second partial derivatives are:

$$
f_{xx}(1,1) = 6(1) = 6
$$
, $f_{yy}(1,1) = 6(1) = 6$, $f_{xy}(1,1) = -3$.

The Hessian determinant is:

$$
H(1, 1) = (6)(6) - (-3)^2 = 36 - 9 = 27.
$$

Since $H(1, 1) > 0$ and $f_{xx}(1, 1) > 0$, the point $(1, 1)$ is a **local minimum**.

1.4 Conclusion

The critical points of the function $f(x,y) = x^3 - 3xy + y^3$ are $(0,0)$ and $(1, 1)$. Using the second derivative test: - The point $(0, 0)$ is a **saddle point**. - The point $(1, 1)$ is a **local minimum**.

2 Solution

We are tasked with finding the maximum and minimum values of the function:

$$
f(x,y) = x^3 + y^3
$$

on the region defined by the constraint:

$$
x^2 + 2y^2 \le 36.
$$

This region is an ellipse centered at the origin.

2.1 Step 1: Analyze the constraint and region

The region defined by $x^2 + 2y^2 \leq 36$ is an ellipse. To parameterize the boundary, we rewrite the equation of the ellipse as:

$$
\frac{x^2}{36} + \frac{y^2}{18} = 1.
$$

Thus, the semi-major axis is along the x-axis with length 6, and the semi-minor axis is along the y-axis with length $\sqrt{18} \approx 4.24$.

2.2 Step 2: Use the method of Lagrange multipliers

To find the maximum and minimum values of $f(x,y) = x^3 + y^3$ on the boundary of the region, we use the method of Lagrange multipliers. The constraint function is:

$$
g(x, y) = x^2 + 2y^2 - 36 = 0.
$$

The gradients of f and g are:

$$
\nabla f(x, y) = \langle 3x^2, 3y^2 \rangle,
$$

$$
\nabla g(x, y) = \langle 2x, 4y \rangle.
$$

According to the method of Lagrange multipliers, we must have:

$$
\nabla f(x, y) = \lambda \nabla g(x, y).
$$

This gives the system of equations:

$$
3x^2 = \lambda(2x),
$$

$$
3y^2 = \lambda(4y).
$$

Case 1: $x = 0$ Substitute $x = 0$ into the constraint $x^2 + 2y^2 = 36$:

$$
0^2 + 2y^2 = 36
$$
 \Rightarrow $y^2 = 18$ \Rightarrow $y = \pm \sqrt{18} = \pm 3\sqrt{2}$.

At (0, 3 √ 2) and (0, −3 √ 2), the function $f(x, y)$ becomes:

$$
f(0, 3\sqrt{2}) = 0^3 + (3\sqrt{2})^3 = 0 + 54\sqrt{2},
$$

$$
f(0, -3\sqrt{2}) = 0^3 + (-3\sqrt{2})^3 = 0 - 54\sqrt{2}.
$$

Case 2: $y = 0$ Substitute $y = 0$ into the constraint $x^2 + 2y^2 = 36$:

$$
x^2 + 0^2 = 36 \implies x^2 = 36 \implies x = \pm 6.
$$

At $(6, 0)$ and $(-6, 0)$, the function $f(x, y)$ becomes:

$$
f(6, 0) = 63 + 03 = 216,
$$

$$
f(-6, 0) = (-6)3 + 03 = -216.
$$

Case 3: $x \neq 0$ and $y \neq 0$ For $x \neq 0$ and $y \neq 0$, we can solve for λ from the Lagrange multiplier equations:

$$
3x2 = \lambda(2x) \Rightarrow \lambda = \frac{3x}{2},
$$

$$
3y2 = \lambda(4y) \Rightarrow \lambda = \frac{3y2}{4y} = \frac{3y}{4}.
$$

Equating the two expressions for λ :

$$
\frac{3x}{2} = \frac{3y}{4} \quad \Rightarrow \quad 4x = 2y \quad \Rightarrow \quad y = 2x.
$$

Substitute $y = 2x$ into the constraint $x^2 + 2y^2 = 36$:

$$
x^2+2(2x)^2 = 36
$$
 \Rightarrow $x^2+8x^2 = 36$ \Rightarrow $9x^2 = 36$ \Rightarrow $x^2 = 4$ \Rightarrow $x = \pm 2$.

When $x = 2$, $y = 4$, and when $x = -2$, $y = -4$. At $(2, 4)$ and $(-2, -4)$, the function $f(x, y)$ becomes:

$$
f(2,4) = 2^3 + 4^3 = 8 + 64 = 72,
$$

$$
f(-2,-4) = (-2)^3 + (-4)^3 = -8 - 64 = -72.
$$

2.3 Step 4: Evaluate the values

We summarize the values of $f(x, y)$ at the critical points:

 $f(6,0) = 216$ - $f(-6,0) = -216$ - $f(0,3\sqrt{2}) = 54\sqrt{2} \approx 76.37$ $f(0, -3)$ $y(0,0) = 210 - (0,0) = -210 - (0,0) = 34\sqrt{2}$
 $\sqrt{2}$ = −54 $\sqrt{2}$ ≈ −76.37 - $f(2, 4)$ = 72 - $f(-2, -4)$ = −72

2.4 Step 5: Conclusion

The **global maximum** value of $f(x, y)$ on the region $x^2 + 2y^2 \le 36$ is:

$$
f_{\text{max}} = 216
$$
 at $(6, 0)$.

The **global minimum** value of $f(x, y)$ on the region $x^2 + 2y^2 \le 36$ is:

 $f_{\min} = -216$ at $(-6, 0)$.

3 Solution

ChatGPT go this wrong. Kappa.

4 Solution

We are tasked with finding the maximum and minimum values of the function:

$$
f(x, y, z) = x^2 + x + 3y^2 + 2z^2
$$

subject to the constraint:

$$
g(x, y, z) = x^2 + y^2 + z^2 - 1 = 0.
$$

4.1 Step 1: Set up the Lagrangian

We use the method of Lagrange multipliers by defining the Lagrangian function:

$$
\mathcal{L}(x, y, z, \lambda) = x^2 + x + 3y^2 + 2z^2 - \lambda(x^2 + y^2 + z^2 - 1).
$$

4.2 Step 2: Compute the partial derivatives

Compute the partial derivatives of ${\mathcal L}$ with respect to $x,\,y,\,z,$ and $\lambda;$

$$
\frac{\partial \mathcal{L}}{\partial x} = 2x + 1 - 2\lambda x = 0,
$$

$$
\frac{\partial \mathcal{L}}{\partial y} = 6y - 2\lambda y = 0,
$$

$$
\frac{\partial \mathcal{L}}{\partial z} = 4z - 2\lambda z = 0,
$$

$$
\frac{\partial \mathcal{L}}{\partial \lambda} = -(x^2 + y^2 + z^2 - 1) = 0.
$$

4.3 Step 3: Solve the system of equations

We have the following system:

$$
2x + 1 - 2\lambda x = 0 \t(1) \t(1)
$$

$$
6y - 2\lambda y = 0 \quad (2)
$$

$$
4z - 2\lambda z = 0 \quad (3)
$$

$$
x^2 + y^2 + z^2 = 1 \quad (4)
$$
 (4)

From Equation (2): Either $y = 0$ or $6 - 2\lambda = 0$. If $y \neq 0$, then: $6 - 2\lambda = 0 \Rightarrow \lambda = 3.$

- **From Equation (3):** Either $z = 0$ or $4 2\lambda = 0$.
	- If $z \neq 0$, then:

$$
4 - 2\lambda = 0 \quad \Rightarrow \quad \lambda = 2.
$$

Since λ cannot be both 3 and 2, we consider the cases where either $y = 0$ or $z=0$.

4.3.1 Case 1: $y = 0$

From Equation (3):

$$
4z - 2\lambda z = 0 \quad \Rightarrow \quad z(4 - 2\lambda) = 0.
$$

Subcase 1.1: $z = 0$ Then from Equation (1):

$$
2x + 1 - 2\lambda x = 0 \quad \Rightarrow \quad 2x(1 - \lambda) + 1 = 0.
$$

Subcase 1.1.1: Solve for x If $x \neq 0$, then:

$$
2x(1 - \lambda) + 1 = 0 \quad \Rightarrow \quad x = \frac{-1}{2(1 - \lambda)}.
$$

But since $x^2 + y^2 + z^2 = 1$ and $y = 0$, $z = 0$, we have:

$$
x^2 = 1 \quad \Rightarrow \quad x = \pm 1.
$$

Subcase 1.1.2: Find λ for $x = \pm 1$ For $x = 1$:

> $2(1) + 1 - 2\lambda(1) = 0 \Rightarrow 2 + 1 - 2\lambda = 0 \Rightarrow \lambda = \frac{3}{2}$ $\frac{3}{2}$.

For $x = -1$:

$$
2(-1) + 1 - 2\lambda(-1) = 0 \Rightarrow -2 + 1 + 2\lambda = 0 \Rightarrow \lambda = \frac{1}{2}.
$$

Subcase 1.2: $z \neq 0$ Then $4 - 2\lambda = 0 \Rightarrow \lambda = 2$. From Equation (1):

$$
2x + 1 - 4x = 0 \Rightarrow -2x + 1 = 0 \Rightarrow x = \frac{1}{2}.
$$

From Equation (4):

$$
\left(\frac{1}{2}\right)^2 + 0 + z^2 = 1 \quad \Rightarrow \quad z^2 = \frac{3}{4} \quad \Rightarrow \quad z = \pm \frac{\sqrt{3}}{2}.
$$

4.3.2 Case 2: $z = 0$ Similarly, we find $y = \pm$ $\sqrt{15}$ $\frac{\sqrt{15}}{4}$ and $x = \frac{1}{4}$ $\frac{1}{4}$. **4.4** Step 4: Evaluate $f(x, y, z)$ at critical points **Point 1:** $(x, y, z) = (1, 0, 0)$

$$
f(1,0,0) = (1)^2 + 1 + 0 + 0 = 2.
$$

Point 2: $(x, y, z) = (-1, 0, 0)$

$$
f(-1,0,0) = (-1)2 + (-1) + 0 + 0 = 1 - 1 = 0.
$$

Point 3: 1 $\frac{1}{2}, 0, \pm$ $\sqrt{3}$ $\frac{\sqrt{3}}{2}$

$$
f\left(\frac{1}{2},0,\pm\frac{\sqrt{3}}{2}\right) = \left(\frac{1}{2}\right)^2 + \frac{1}{2} + 0 + 2\left(\frac{\sqrt{3}}{2}\right)^2 = \frac{1}{4} + \frac{1}{2} + 0 + \frac{3}{2} = \frac{9}{4} = 2.25.
$$

 $\textbf{Point 4:} \ \left(\frac{1}{4} \right)$ $\frac{1}{4}, \pm$ $\sqrt{15}$ $\left(\frac{\sqrt{15}}{4},0\right)$

$$
f\left(\frac{1}{4}, \pm \frac{\sqrt{15}}{4}, 0\right) = \left(\frac{1}{4}\right)^2 + \frac{1}{4} + 3\left(\frac{\sqrt{15}}{4}\right)^2 + 0 = \frac{1}{16} + \frac{1}{4} + 3\left(\frac{15}{16}\right) = \frac{1}{16} + \frac{1}{4} + \frac{45}{16} = \frac{50}{16} = \frac{25}{8} = 3.125.
$$

4.5 Step 5: Determine the maximum and minimum values

From the evaluations, we have:

•
$$
f_{\text{max}} = \frac{25}{8} = 3.125 \text{ at } \left(\frac{1}{4}, \pm \frac{\sqrt{15}}{4}, 0\right).
$$

• $f_{\min} = 0$ at $(-1, 0, 0)$.

4.6 Conclusion

The maximum value of $f(x, y, z)$ on the unit sphere is $\frac{25}{8}$ at the points $\sqrt{1}$ $\frac{1}{4}$, \pm √ 15 $\frac{15}{4}$, 0 \setminus . The minimum value is 0 at the point $(-1, 0, 0)$.