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1 Solution
We are given the points P = (1, 0, 1), Q = (1, 1, 2), and R = (−1, 1, 1). We
will compute the required values step by step.

1.1 Part 1: Vector from P to the midpoint of the line seg-
ment connecting Q and R

The midpoint M of the line segment connecting Q and R is given by the
average of the coordinates of Q and R:

M =

(
1 + (−1)

2
,
1 + 1

2
,
2 + 1

2

)
= (0, 1,

3

2
)

The vector connecting P toM is the difference between their coordinates:

−−→
PM = M − P = (0− 1, 1− 0,

3

2
− 1) = (−1, 1,

1

2
)

Thus, the vector from P to the midpoint of the line segment connecting
Q and R is:

−−→
PM = (−1, 1,

1

2
)
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1.2 Part 2: Area of the triangle with vertices P,Q,R

The area of the triangle with vertices P,Q,R is given by:

Area =
1

2

∥∥∥−−→PQ×
−→
PR
∥∥∥

First, we compute the vectors
−−→
PQ and

−→
PR:

−−→
PQ = Q− P = (1− 1, 1− 0, 2− 1) = (0, 1, 1)

−→
PR = R− P = (−1− 1, 1− 0, 1− 1) = (−2, 1, 0)

Next, we compute the cross product
−−→
PQ×

−→
PR:

−−→
PQ×

−→
PR =

∣∣∣∣∣∣
i j k
0 1 1
−2 1 0

∣∣∣∣∣∣ = i

∣∣∣∣1 1
1 0

∣∣∣∣− j

∣∣∣∣ 0 1
−2 0

∣∣∣∣+ k

∣∣∣∣ 0 1
−2 1

∣∣∣∣
= i(1(0)− 1(1))− j(0(0)− 1(−2)) + k(0(1)− 1(−2))

= i(−1)− j(2) + k(2)

= (−1,−2, 2)

Now, compute the magnitude of this vector:∥∥∥−−→PQ×
−→
PR
∥∥∥ =

√
(−1)2 + (−2)2 + 22 =

√
1 + 4 + 4 =

√
9 = 3

Thus, the area of the triangle is:

Area =
1

2
× 3 =

3

2
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1.3 Part 3: Equation of the plane through P,Q,R

The normal vector to the plane is given by the cross product
−−→
PQ ×

−→
PR,

which we found to be (−1,−2, 2). The equation of a plane passing through
a point (x0, y0, z0) with normal vector n = 〈A,B,C〉 is:

A(x− x0) +B(y − y0) + C(z − z0) = 0

Substitute A = −1, B = −2, C = 2, and the coordinates of P = (1, 0, 1):

−1(x− 1)− 2(y − 0) + 2(z − 1) = 0

Simplifying:
−(x− 1)− 2y + 2(z − 1) = 0

−x+ 1− 2y + 2z − 2 = 0

−x− 2y + 2z − 1 = 0

Thus, the equation of the plane is:

x+ 2y − 2z = −1
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2 Solution
We are given the following conditions:

x21 + x22 + x23 = 4 and y21 + y22 + y23 = 9

We are asked to find the range of possible values for:

x1y1 + x2y2 + x3y3

This expression is the dot product of the vectors x = 〈x1, x2, x3〉 and y =
〈y1, y2, y3〉.

Step 1: Use the dot product formula

The dot product of two vectors x and y is given by:

x · y = x1y1 + x2y2 + x3y3 = |x||y| cos θ

where:
|x| =

√
x21 + x22 + x23 =

√
4 = 2

|y| =
√
y21 + y22 + y23 =

√
9 = 3

and θ is the angle between the vectors x and y.
Thus, the dot product becomes:

x · y = 2 · 3 · cos θ = 6 cos θ

Step 2: Determine the range of values

Since cos θ ranges between−1 and 1, the dot product x·y will range between:

6 cos θ where − 1 ≤ cos θ ≤ 1

Thus, the range of x · y is:

−6 ≤ x1y1 + x2y2 + x3y3 ≤ 6

Conclusion

The range of possible values for x1y1 + x2y2 + x3y3 is:

[−6, 6]
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3 Solution
We are given the planes:

P1 : x+ 2y + 3z = 0 and P2 : 2y − z = 0

3.1 Part 1: A vector parallel to both P1 and P2

To find a vector parallel to both planes, we note that the normal vector to a
plane is perpendicular to all vectors lying in the plane. The normal vectors
to the planes are:

n1 = 〈1, 2, 3〉 for P1

n2 = 〈0, 2,−1〉 for P2

A vector that is parallel to both planes must be perpendicular to both
normal vectors. Such a vector can be found by taking the cross product of
n1 and n2.

We compute the cross product n1 × n2:

n1 × n2 =

∣∣∣∣∣∣
i j k
1 2 3
0 2 −1

∣∣∣∣∣∣ = i

∣∣∣∣2 3
2 −1

∣∣∣∣− j

∣∣∣∣1 3
0 −1

∣∣∣∣+ k

∣∣∣∣1 2
0 2

∣∣∣∣
= i ((2)(−1)− (3)(2))− j ((1)(−1)− (3)(0)) + k ((1)(2)− (2)(0))

= i(−2− 6)− j(−1) + k(2) = −8i+ j+ 2k

= 〈−8, 1, 2〉

Thus, a vector parallel to both planes is:

〈−8, 1, 2〉
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3.2 Part 2: Distance from the point (2, 1, 4) to the plane P1

The formula for the distance from a point (x1, y1, z1) to a plane Ax+By+
Cz +D = 0 is given by:

Distance = |Ax1 +By1 + Cz1 +D|√
A2 +B2 + C2

For the plane P1 : x+ 2y + 3z = 0, we have:

A = 1, B = 2, C = 3, D = 0

The point is (2, 1, 4), so we substitute the values into the formula:

Distance = |1(2) + 2(1) + 3(4) + 0|√
12 + 22 + 32

=
|2 + 2 + 12|√
1 + 4 + 9

=
16√
14

Distance = 16√
14

≈ 4.28

Thus, the distance from the point (2, 1, 4) to the plane P1 is 16√
14

≈ 4.28.

8



4 Solution

4.1 Part 1: Rotation matrix M associated with counterclock-
wise rotation by 5π

4

The matrix associated with a counterclockwise rotation by an angle θ in R2

is given by:

M =

(
cos θ − sin θ
sin θ cos θ

)
In this case, the angle of rotation is θ = 5π

4 .
First, we compute cos

(
5π
4

)
and sin

(
5π
4

)
:

cos

(
5π

4

)
= − 1√

2
, sin

(
5π

4

)
= − 1√

2

Thus, the rotation matrix M is:

M =

(
− 1√

2
1√
2

− 1√
2

− 1√
2

)
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4.2 Part 2: Calculate MN and NM

We are given the matrix N =

(
1 2 4
−3 6 2

)
.

Check if MN is defined

The matrix M is a 2× 2 matrix, and N is a 2× 3 matrix. The product MN
is defined because the number of columns in M matches the number of rows
in N . The result will be a 2× 3 matrix.

We now calculate MN :

MN =

(
− 1√

2
1√
2

− 1√
2

− 1√
2

)(
1 2 4
−3 6 2

)
We compute each element of the resulting matrix by taking the dot

product of the rows of M with the columns of N :

MN =

 (
− 1√

2
(1) + 1√

2
(−3)

) (
− 1√

2
(2) + 1√

2
(6)
) (

− 1√
2
(4) + 1√

2
(2)
)(

− 1√
2
(1) +− 1√

2
(−3)

) (
− 1√

2
(2) +− 1√

2
(6)
) (

− 1√
2
(4) +− 1√

2
(2)
)

=

(−1+3√
2

−2+6√
2

−4+2√
2

−1−3√
2

−2−6√
2

−4−2√
2

)
=

(
2√
2

4√
2

−2√
2

−4√
2

−8√
2

−6√
2

)

=

( √
2 2

√
2 −

√
2

−2
√
2 −4

√
2 −3

√
2

)

10



Check if NM is defined

The matrix N is 2 × 3 and M is 2 × 2. The product NM is not defined
because the number of columns in N does not match the number of rows in
M .

Thus, NM is **not defined**.

Conclusion

The matrix product MN is:

MN =

( √
2 2

√
2 −

√
2

−2
√
2 −4

√
2 −3

√
2

)
The matrix product NM is not defined.
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5 Solution
We are given the vectors:

v1 =

2
3
0

 , v2 =

0
5
1

 , v3 =

1
2
0


5.1 Part 1: Volume of the parallelepiped

Take the determinant:

det

2 3 0
0 5 1
1 2 0

 = −1.

Thus, the volume of the parallelepiped is:

Volume = | − 1| = 1
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5.2 Part 2: Are these vectors a basis for R3?

To determine if the vectors v1, v2, and v3 form a basis for R3, we check if
they are linearly independent. The vectors are linearly independent if the
determinant above was non-zero.

Since the determinant is −1, which is non-zero, the vectors are linearly
independent.

Therefore, the vectors v1, v2, and v3 form a basis for R3.
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6 Solution
We are given the system of equations:

x+ 3y = 0 (1)

−ax− y = 1 (2)

6.1 Part 1: Matrix equation

We can write this system of equations as a matrix equation. The system
can be written as: (

1 3
−a −1

)(
x
y

)
=

(
0
1

)
Thus, the matrix equation is:

Av = b

where:
A =

(
1 3
−a −1

)
, v =

(
x
y

)
, b =

(
0
1

)

14



6.2 Part 2: Values of a for which the system has a unique
solution

The system has a unique solution if the matrix A is invertible, which occurs
when the determinant of A is non-zero. The determinant of A is given by:

det(A) = det

(
1 3
−a −1

)
= (1)(−1)− (3)(−a) = −1 + 3a

For the matrix to be invertible, we require det(A) 6= 0:

−1 + 3a 6= 0

3a 6= 1 ⇒ a 6= 1

3

Thus, the system has a unique solution for all values of a except a = 1
3 .
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6.3 Part 3: Solution in terms of a using the inverse matrix

To solve the system using the inverse of the matrix, we first compute the
inverse of A, assuming a 6= 1

3 .

The inverse of a 2× 2 matrix A =

(
a b
c d

)
is given by:

A−1 =
1

det(A)

(
d −b
−c a

)

For the matrix A =

(
1 3
−a −1

)
, we already know that:

det(A) = −1 + 3a

Thus, the inverse of A is:

A−1 =
1

−1 + 3a

(
−1 −3
a 1

)
Now, we solve for v = A−1b:

v =
1

−1 + 3a

(
−1 −3
a 1

)(
0
1

)

=
1

−1 + 3a

(
−3
1

)
Thus, the solution is:

v =

(
x
y

)
=

1

−1 + 3a

(
−3
1

)
The solutions for x and y in terms of a are:

x =
−3

−1 + 3a
, y =

1

−1 + 3a
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7 Solution
We are given the matrix:

A =

(
5 8
7 4

)
7.1 Part 1: Characteristic polynomial and eigenvalues

The characteristic polynomial of a matrix A is given by:

det(A− λI) = 0

where λ is an eigenvalue and I is the identity matrix.
We compute A− λI:

A− λI =

(
5 8
7 4

)
− λ

(
1 0
0 1

)
=

(
5− λ 8
7 4− λ

)
Now, we compute the determinant of A− λI:

det(A− λI) = det

(
5− λ 8
7 4− λ

)
= (5− λ)(4− λ)− (8)(7)

= (5− λ)(4− λ)− 56

= 20− 9λ+ λ2 − 56 = λ2 − 9λ− 36

Thus, the characteristic polynomial is:

λ2 − 9λ− 36 = 0

We solve this quadratic equation using the quadratic formula:

λ =
−(−9)±

√
(−9)2 − 4(1)(−36)

2(1)
=

9±
√
81 + 144

2
=

9±
√
225

2
=

9± 15

2

The solutions are:

λ1 =
9 + 15

2
= 12, λ2 =

9− 15

2
= −3

Thus, the eigenvalues of A are:

λ1 = 12, λ2 = −3
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7.2 Part 2: Eigenvector corresponding to the largest eigen-
value λ1 = 12

To find the eigenvector corresponding to λ1 = 12, we solve the system:

(A− 12I)v = 0

where v =

(
v1
v2

)
.

First, compute A− 12I:

A− 12I =

(
5− 12 8

7 4− 12

)
=

(
−7 8
7 −8

)
Now, solve the system (A− 12I)v = 0:(

−7 8
7 −8

)(
v1
v2

)
=

(
0
0

)
This gives the system of equations:

−7v1 + 8v2 = 0 (1)

7v1 − 8v2 = 0 (2)

Both equations are the same, so we can solve for v1 in terms of v2. From
equation (1), we get:

−7v1 + 8v2 = 0 ⇒ v1 =
8

7
v2

Thus, a corresponding eigenvector is:

v =

(
8
7v2
v2

)
= v2

(
8
7
1

)
For simplicity, we can choose v2 = 7, which gives:

v =

(
8
7

)
Therefore, an eigenvector corresponding to λ1 = 12 is:

v =

(
8
7

)
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8 Solution

8.1 Part 1: Calculate (1− i
√
3)7 by converting to polar form

We are tasked with finding (1− i
√
3)7. To do this, we first convert 1− i

√
3

to polar form and then apply De Moivre’s theorem.

Step 1: Convert to polar form The modulus r of 1− i
√
3 is:

r = |1− i
√
3| =

√
12 + (−

√
3)2 =

√
1 + 3 =

√
4 = 2

Next, we calculate the argument θ:

θ = arg(1− i
√
3) = tan−1

(
−
√
3

1

)
= −π

3

Thus, the polar form of 1− i
√
3 is:

1− i
√
3 = 2

(
cos
(
−π

3

)
+ i sin

(
−π

3

))
Step 2: Apply De Moivre’s theorem Using De Moivre’s theorem, we
compute:

(1− i
√
3)7 =

[
2
(
cos
(
−π

3

)
+ i sin

(
−π

3

))]7
= 27

(
cos
(
7×−π

3

)
+ i sin

(
7×−π

3

))
= 128

(
cos

(
−7π

3

)
+ i sin

(
−7π

3

))
Since −7π

3 = −2π − π
3 , we simplify using periodicity:

cos

(
−7π

3

)
= cos

(
−π

3

)
=

1

2
, sin

(
−7π

3

)
= sin

(
−π

3

)
= −

√
3

2

Thus, we have:

(1− i
√
3)7 = 128

(
1

2
+ i

(
−
√
3

2

))

= 128× 1

2
+ 128×

(
−
√
3

2

)
i

= 64− 64
√
3i

Therefore:
(1− i

√
3)7 = 64− 64

√
3i
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8.2 Part 2: Find zw and z
w

We are given z = 2 + 3i and w = 1 + 2i.

Step 1: Compute zw The product of two complex numbers is given by:

zw = (2 + 3i)(1 + 2i)

Expand the product:

zw = 2(1) + 2(2i) + 3i(1) + 3i(2i)

= 2 + 4i+ 3i+ 6i2

Since i2 = −1, this simplifies to:

zw = 2 + 7i+ 6(−1) = 2 + 7i− 6 = −4 + 7i

Thus:
zw = −4 + 7i

Step 2: Compute z
w The conjugate of w = 1+2i is w = 1− 2i. We now

compute z
w :

z

w
=

2 + 3i

1− 2i

We multiply the numerator and denominator by the conjugate of the de-
nominator 1 + 2i:

z

w
=

(2 + 3i)(1 + 2i)

(1− 2i)(1 + 2i)

First, compute the denominator:

(1− 2i)(1 + 2i) = 12 − (2i)2 = 1− (−4) = 5

Now, compute the numerator:

(2 + 3i)(1 + 2i) = 2(1) + 2(2i) + 3i(1) + 3i(2i)

= 2 + 4i+ 3i+ 6i2 = 2 + 7i+ 6(−1) = 2 + 7i− 6 = −4 + 7i

Thus:
z

w
=

−4 + 7i

5
= −4

5
+

7

5
i

Therefore:
z

w
= −4

5
+

7

5
i
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