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18.02 Recitation MW9

Evan Chen
23 September 2024

Run, you clever boy, and remember.
— Clara Oswald, in Doctor Who

This handout (and any other DLC’s I write) are posted at https://web.evanchen.cc/1802.html.

• Optional midterm review, 4-270, Thu 4:30pm-6:30pm. Led by me, Vinjay, and Sebastian.
• Please fill out the survey at https://forms.gle/AsXPweCbJ1Nvzp3k7 when you can.
• I made a Discord server. If you didn’t get the link emailed to you, ask me to join.
• Remember that September 30 is the last day to switch sections freely on Canvas.

§1  It’s a miracle that multiplication in ℂ has geometric meaning
Let ℂ denote the set of complex numbers (just as ℝ denotes the real numbers). It’s important that
realize that, until we add in complex multiplication, ℂ is just an elaborate ℝ2 cosplay.

Concept For ℝ2 For ℂ
Notation 𝐯 𝑧
Components (𝑥

𝑦) 𝑥 + 𝑦𝑖
Length Length |𝐯| Abs val |𝑧|
Direction (slope, maybe?) argument 𝜃
Length 1 unit vector 𝑒𝑖𝜃 = cos 𝜃 + 𝑖 sin 𝜃
Multiply NONE  𝑧1𝑧2 

• All the way back in R01, when I warned you about type safety, I repeatedly stressed you that you
cannot multiply two vectors in ℝ𝑛 to get another vector. You had a “dot product”, but it spits
out a number. (Honestly, you shouldn’t think of dot product as a “product”; the name sucks.)

• Of course, the classic newbie mistake (which you better not make on your midterm) is to define a

product on vectors component-wise: why can’t (
𝑥1

⋮
𝑥𝑛

) and (
𝑦1

⋮
𝑦𝑛

) have “product” (
𝑥1𝑦1

⋮
𝑥𝑛𝑦𝑛

)? Well,

in 18.02, every vector definition needed a corresponding geometric picture for us to consider it
worthy of attention (see table at start of r03.pdf). This definition has no geometric meaning.

• However, there is a big miracle for ℂ. For complex numbers, you can define multiplication by 
(𝑎 + 𝑏𝑖)(𝑐 + 𝑑𝑖) = (𝑎𝑐 − 𝑏𝑑) + (𝑎𝑑 + 𝑏𝑐)𝑖 and there is an amazing geometric interpretation.

Unfortunately, AFAIK there is no English word for “complex number whose absolute value is one” (err,
CNWAVIO?), the same way there is for “unit vector”. For 18.02, we instead use 𝑒𝑖𝜃 ≔ cos 𝜃 + 𝑖 sin 𝜃 as
the “word”; whenever you see 𝑒𝑖𝜃, draw it as unit vector cos 𝜃 + 𝑖 sin 𝜃.
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It’s worth pointing out the notation 𝑒𝑖𝜃 should strike you as nonsense. What meaning does it have to
raise a number to an imaginary power? Does 𝑖𝑖 have a meaning? Does cos(𝑖) have a meaning? (If you
want to know, check Section 4.1 in the post-recitation notes.)

But for 18.02, when starting out, I would actually think of the notation 𝑒𝑖𝜃 as a mnemonic, i.e. a silly
way to remember the following result:

Theorem 1.1 :  If you multiply two CNWAVIO’s, you get the CNWAVIO with the angles added:

𝑒𝑖𝜃1𝑒𝑖𝜃2 = 𝑒𝑖(𝜃1+𝜃2) ⟺ cos(𝜃1 + 𝜃2) + 𝑖 sin(𝜃1 + 𝜃2) = (cos 𝜃1 + 𝑖 sin 𝜃1)(cos 𝜃2 + 𝑖 sin 𝜃2).

More generally, multiplying two complex numbers multiplies the norms and adds the angles.

This is IMO the biggest miracle in all of precalculus. Corollary: 𝑒𝑖𝑛𝜃 = (𝑒𝑖𝜃)𝑛 ⟺ (cos 𝜃 + 𝑖 sin 𝜃)𝑛 =
cos(𝑛𝜃) + 𝑖 sin(𝑛𝜃), allows taking 𝑛th roots; Maulik showed 𝑧2 = 2𝑖 in class.

§2  Rectangular vs polar
Every complex number can be written in either rectangular form (𝑎 + 𝑏𝑖 for 𝑎, 𝑏 ∈ ℝ) or polar form
(𝑟𝑒𝑖𝜃). Depending on what you are trying to do, some forms are easier to work with than others.

Operation In rectangular In polar
𝑧1 ± 𝑧2  Component-wise like in ℝ2  Unless 𝑧1 is a real multiple of 𝑧2

𝑧1𝑧2  Expanding  by Theorem 1.1
𝑧1/𝑧2  Use 1

𝑐+𝑑𝑖 = 𝑐−𝑑𝑖
𝑐2+𝑑2  trick then multiply  by Theorem 1.1

𝑛th root of 𝑧1  Not recommended for 𝑛 > 1  by Theorem 1.1 corollary

§3  Recitation problems from official course
1. For each of the following points, convert it from Cartesian to polar or vice versa:

• (𝑥, 𝑦) = (−
√

3, 1)
• (𝑟, 𝜃) = (3, 𝜋/6)
• (𝑥, 𝑦) = (−

√
6, −

√
2)

2. Show that sin(𝜃) = 1
2𝑖(𝑒

𝑖𝜃 − 𝑒−𝑖𝜃) and cos(𝜃) = 1
2(𝑒𝑖𝜃 + 𝑒−𝑖𝜃). Use this to write (sin(𝜃))3 in terms

sin(3𝜃) and sin(𝜃).
3. Consider the complex number 𝑓(𝑡) = 𝑡+2𝑖

1−3𝑖  where 𝑡 is real.
• Find the real and imaginary part of 𝑓(𝑡).
• Find 𝑓(𝑡) and |𝑓(𝑡)|2.

4. Use polar form to find the fourth powers of 2 + 2𝑖 and −3 + 𝑖
√

3. Graph these numbers and their
fourth powers on the complex plane.

5. (If you have time) Consider the matrix 𝐴 = (0
1

−1
0 ). In class, working with real numbers, this had

no eigenvectors. But now we can treat it as a matrix with complex number entries. Find complex
number eigenvalues for 𝐴 and for each one, find an eigenvector in ℂ2, i.e. a two-component vec-
tor (𝑧

𝑤) where 𝑧, 𝑤 are complex numbers.
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§4  Post-recitation notes

§4.1  The importance of definitions; also cos(𝑖) and 𝑖𝑖 (not for exam)
When learning mathematics, I believe definitions are actually more important than theorems. A lot
of confusion comes from not having been given careful definitions of the objects. (See https://web.
evanchen.cc/handouts/NaturalProof/NaturalProof.pdf for more on that.)

So in general any time you are confused about whether an operation is “legal” — and this is true in all
of math, not just 18.02 — the first thing to really check whether you have been given a precise
definition. The endless Internet debates on whether 0 is even or whether 0.999… = 1 or whether 1𝑥  is
a continuous function (hint: yes) are all examples of people who don’t know the definitions of objects
they’re dsicussing.

§4.1.1  Real exponents, real base

With that in mind, let’s fix 𝑎 > 0 a positive real number and think about what 𝑎𝑟 should mean.

Definition 4.1 (18.100 definition) :
• When 𝑛 > 0 is an integer, then 𝑎𝑛 ≔ 𝑎 × … × 𝑎, where 𝑎 is repeated 𝑛 times.
• Then we let 𝑎−𝑛 ≔ 1

𝑎𝑛  for each integer 𝑛 > 0.
• When 𝑚

𝑛  is a rational number, 𝑎𝑚
𝑛  means the unique 𝑏 > 0 such that 𝑎𝑚 = 𝑏𝑛. (In 18.100,

one proves this 𝑏 is unique and does exist.)
• It’s less clear what 𝑎𝑥 means when 𝑥 ∈ ℝ, like 𝑥 =

√
2 or 𝑥 = 𝜋. I think usually one takes

a limit of rational numbers 𝑞 close to 𝑥 and lets 𝑎𝑥 ≔ lim𝑞→𝑥 𝑎𝑞 . (In 18.100, one proves this
limit does in fact exist.)

§4.1.2  Complex exponents, real base

But when 𝑧 ∈ ℂ, what does 𝑎𝑧 mean? There’s no good way to do this.

You likely don’t find an answer until 18.112, but I’ll tell you now. In 18.100 you will also prove that the
Taylor series

𝑒𝑥 = ∑
𝑘≥0

𝑟𝑘

𝑘!

is correct, where 𝑒 ≔ ∑𝑘≥0
1
𝑘!  is Euler’s constant.

So then when you start 18.112, we will flip the definition on its head:

Definition 4.2 (18.112 definition) :  If 𝑧 ∈ ℂ, we define

𝑒𝑧 ≔ ∑
𝑘≥0

𝑧𝑘

𝑘!
.

Then for 𝑎 > 0, we let 𝑎𝑧 = 𝑒𝑧 log 𝑎.
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To summarize: in 18.100, we defined exponents in the way you learned in grade school and then proved
there was a Taylor series. But in 18.112, you start with the Taylor series and then prove that the rules
in grade school you learned still applied.

And checking this consistency requires work. Because we threw away Definition 4.1, identities like 
𝑒𝑧1+𝑧2 = 𝑒𝑧1𝑒𝑧2  and (𝑒𝑧1)𝑧2 = 𝑒𝑧1𝑧2  are no longer “free”: they have to be proved rigorously too. (To
be fair, they need to be proved in 18.100 too, but there it’s comparatively easier.) I think you shouldn’t
be surprised they’re true; we know it’s true for ℝ, so it’s one heck of a good guess. But you shouldn’t
take these on faith. At least get your professor to acknowledge they require a (non-obvious) proof,
even if you aren’t experienced enough to follow the proof yourself yet.

Anyway, if we accept this definition, then Euler’s formula makes more sense:

Theorem 4.3 (Euler) : We have

𝑒𝑖𝜃 = cos 𝜃 + 𝑖 sin 𝜃.

The point is that cosine and sine also have a Taylor series that is compatible with definition:

cos(𝑥) = 1 −
𝑥2

2!
+

𝑥4

4!
−

𝑥6

6!
+ …

sin(𝑥) = 𝑥 −
𝑥3

3!
+

𝑥5

5!
−

𝑥7

7!
+ ….

(1)

And if you put these together, you can verify Theorem 4.3, up to some technical issues with infinite
sums. I think Maulik even showed this in class:

cos(𝜃) + 𝑖 sin(𝜃) = (1 −
𝜃2

2!
+

𝜃4

4!
− …) + (𝜃 −

𝜃3

3!
+

𝜃5

5!
− …)𝑖

= 1 + (𝜃𝑖) +
(𝜃𝑖)2

2!
+

(𝜃𝑖)3

3!
+

𝜃𝑖4

4!
+

(𝜃𝑖)5

5!
= 𝑒𝑖𝜃.

§4.1.3  Complex exponents, complex base

But what about 𝑖𝑖? Our Definition 4.2 above only worked for positive real numbers 𝑎 > 0. Here, it
turns out you’re out of luck. There isn’t any way to define 𝑖𝑖 in a way that makes internal sense. The
problem is that there’s no way to take a single log of a complex number, so the analogy with log 𝑎
breaks down.

Put another way: there’s no good way to assign a value to log(𝑖), because 𝑒𝑖𝜋/2 = 𝑒5𝑖𝜋/2 = … are all
equal to 𝑖. You might hear this phrased “complex-valued logarithms are multivalued”. You can have
some fun with this paradox:

𝑖 = 𝑒𝑖𝜋/2 ⟹ 𝑖𝑖 = 𝑒−𝜋/2

𝑖 = 𝑒5𝑖𝜋/2 ⟹ 𝑖𝑖 = 𝑒−5𝜋/2.

Yeah, trouble.
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§4.1.4  Trig functions with complex arguments

On the other hand, cos(𝑖) can be defined: use the Taylor series Equation 1, like we did for 𝑒𝑧. To spell
it out:

Definition 4.4 (18.112 trig definitions) :  If 𝑧 is a complex number, we define

cos(𝑧) ≔ 1 −
𝑧2

2!
+

𝑧4

4!
−

𝑧6

6!
+ …

sin(𝑧) ≔ 𝑧 −
𝑧3

3!
+

𝑧5

5!
−

𝑧7

7!
+ ….

If you do this, then Definition 4.2 implies the following identities are kosher:

Proposition 4.5 :  Under Definition 4.4, we have the identities

cos(𝑧) ≔
𝑒𝑖𝑧 + 𝑒−𝑖𝑧

2

sin(𝑧) ≔
𝑒𝑖𝑧 − 𝑒−𝑖𝑧

2𝑖
.

Proof :  If you write out 𝑒𝑖𝑧 = ∑ (𝑖𝑧)𝑘

𝑘!  and 𝑒−𝑖𝑧 = ∑ (−𝑖𝑧)𝑘

𝑘!  and add them, the odd 𝑘’s cancel out
and the even 𝑘’s don’t, which gives you

𝑒𝑖𝑧 + 𝑒−𝑖𝑧 = 2 − 2 ⋅
𝑧2

2!
+ 2 ⋅

𝑧4

4!
− 2 ⋅

𝑧6

6!
+ ….

So dividing by 2, we see cos(𝑧) on the right-hand side, as needed. The argument with sin is
similar, but this time the even 𝑘’s cancel and you divide by 2𝑖 instead. □

So for example, from Proposition 4.5, we conclude for example that

cos(𝑖) =
𝑒 + 1

𝑒
2

.

Strange but true.

§4.2  The future: what are 18.100 and 18.112 anyway? (not for exam)
First I need to tell you what analysis is. When students in USA ask me what analysis is, I sometimes
say “calculus but you actually prove things”. But that’s actually a bit backwards; it turns out that in
much parts of the world, there is no topic called “calculus”.¹ It would be more accurate to say calculus

¹See https://web.evanchen.cc/faq-school.html#S-10.

is analysis with proofs, theorems, and coherent theorem statements deleted, and it only exists in some
parts of the world (which is why mathematicians will tend to look down on it).

With that out of the way,

• 18.100 is real analysis, i.e. analysis of functions over ℝ
• 18.112 is complex analysis, i.e. analysis of functions over ℂ.
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If you ever take either class, I think the thing to know about them is:

Complex analysis is the good twin and real analysis is the evil one: beautiful formulas and ele-
gant theorems seem to blossom spontaneously in the complex domain, while toil and pathology
rule the reals

— Charles Pugh, in Real Mathematical Analysis

Personally, I think it’s insane that MIT uses 18.100 as their “intro to proofs” topic. (This is why 18.100
is a prerequisite for 18.701, abstract algebra, which makes no sense either.)

§5  Exponentiation (for exam)
This section is dedicated to 𝑧𝑛 and is on-syllabus for exam. Specifically, you ought to be able to solve
equations like 𝑧5 = 243𝑖. This section shows you how.

In this whole section, you always prefer to work in polar form. So if you get input in rectangular form,
you should first convert to rectangular form. Conversely, if the answer is asked for in rectangular form,
you should work with polar form anyway, and only convert to rectangular output at the end.

§5.1  Raising to the 𝑛th power
Before being able to extract 𝑛th roots, I need to make sure you know how to do 𝑛th powers. This
is easy:

(𝑟(cos 𝜃 + 𝑖 sin 𝜃))𝑛 = 𝑟𝑛(cos 𝑛𝜃 + 𝑖 sin 𝑛𝜃).

For example,

(3(cos 18° + 𝑖 sin 18°))5 = 243(cos 90° + 𝑖 sin 90°) = 243𝑖.

§5.2  Extracting 𝑛th roots
If you can run the process in forwards, then you should be able to run the process backwards too. First,
I will tell you what the answer looks like:

Theorem 5.1 :  Consider solving the equation 𝑧𝑛 = 𝑤, where 𝑤 is a given nonzero complex
number, for 𝑧. Then you should always output exactly 𝑛 answers. Those 𝑛 answers all have
magnitude |𝑤| 1

𝑛  and arguments spaced apart by 360°
𝑛 .

I think it’s most illustrative if I show you the five answers to

𝑧5 = 243𝑖

to start. Again, first we want to convert everything to polar coordinates:

𝑧5 = 243𝑖 = 243(cos 90° + 𝑖 sin 90°).

At this point, we know that if |𝑧5| = 243, then |𝑧| = 3; all the answers should have absolute 3. So the
idea is to find the angles. Here are the five answers:
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𝑧1 = 3(cos 18° + 𝑖 sin 18°) ⟹ (𝑧1)
5 = 243(cos 90° + 𝑖 sin 90°)

𝑧2 = 3(cos 90° + 𝑖 sin 90°) ⟹ (𝑧2)
5 = 243(cos 450° + 𝑖 sin 450°)

𝑧3 = 3(cos 162° + 𝑖 sin 162°) ⟹ (𝑧3)
5 = 243(cos 810° + 𝑖 sin 810°)

𝑧4 = 3(cos 234° + 𝑖 sin 234°) ⟹ (𝑧4)
5 = 243(cos 1170° + 𝑖 sin 1170°)

𝑧5 = 3(cos 306° + 𝑖 sin 306°) ⟹ (𝑧5)
5 = 243(cos 1530° + 𝑖 sin 1530°).

Here’s a picture of the five numbers:

Figure 1: The five answers to 𝑧5 = 243𝑖, each of length 3.

On the right column, all the numbers are equal. Notice something interesting happening on the right-
hand side. The numbers cos 90° + 𝑖 sin 90° and cos 450° + 𝑖 sin 450°, etc. are all the same number; if
you draw them in the plane, they’ll point to the same thing. However, they give five different answers
on the left. But if you continue the pattern one more, you start getting a cycle

𝑧6 = 3(cos 378° + 𝑖 sin 378°) ⟹ (𝑧6)
5 = 243(cos 1890° + 𝑖 sin 1890°).

This doesn’t give you a new answer, because 𝑧6 = 𝑧1.

In general, if 𝑤 has argument 𝜃, then the arguments of 𝑧 satisfying 𝑧𝑛 = 𝑤 start at 𝜃
𝑛  and then go up

in increments of 360°
𝑛 . (For example, they started at 90°

5 = 18° for answers to 𝑧5 = 243𝑖.) So you can
describe the general recipe as:
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Recipe for 𝑛th roots

1. Convert 𝑤 to polar form; say it has angle 𝜃.
2. One of the 𝑛 answers will be |𝑤| 1

𝑛 (cos 𝜃
𝑛 + 𝑖 sin 𝜃

𝑛).
3. The other 𝑛 − 1 answers are obtained by increasing the angle in increments of 360°

𝑛 .

• Example 1: Solve 𝑧5 = 243𝑖.

Answer 1: we first convert to polar form as

243𝑖 = 243(cos 90° + 𝑖 sin 90°)

and see that 2431
5 = 3, and 𝜃 = 90°. The first angle is 𝜃

5 = 18°. So the five answers are

𝑧1 = 3(cos 18° + 𝑖 sin 18°)
𝑧2 = 3(cos 90° + 𝑖 sin 90°)
𝑧3 = 3(cos 162° + 𝑖 sin 162°)
𝑧4 = 3(cos 234° + 𝑖 sin 234°)
𝑧5 = 3(cos 306° + 𝑖 sin 306°).

(As it happens, 𝑧2 = 3𝑖, which is easy to check by hand works.)

• Example 2: Solve 𝑧4 = 8 + 8
√

3𝑖.

Answer 2: We first convert to polar form as

8 + 8
√

3𝑖 = 16(cos 60° + 𝑖 sin 60°)

and see that 161
4 = 2, and 𝜃 = 60°. The first angle is 𝜃

4 = 15°. So the four answers are

𝑧1 = 2(cos 15° + 𝑖 sin 15°)
𝑧2 = 2(cos 105° + 𝑖 sin 105°)
𝑧3 = 2(cos 195° + 𝑖 sin 195°)
𝑧4 = 2(cos 285° + 𝑖 sin 285°).

• Example 3: Solve 𝑧3 = −1000.

Answer 3: We first convert to polar form as

−1000 = 1000(cos 180° + 𝑖 sin 180°)

and see that 10001
3 = 10, and 𝜃 = 180°. The first angle is 𝜃

3 = 60°. So the three answers are

𝑧1 = 10(cos 60° + 𝑖 sin 60°)
𝑧2 = 10(cos 180° + 𝑖 sin 180°)
𝑧3 = 10(cos 300° + 𝑖 sin 300°).

(As it happens, 𝑧2 = −10, as expected, since (−10)3 = −1000.)
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