
18.02, Fall 2024, Recitation 5

1. Compute the eigenvalues and eigenvectors of the following matrices:

• A =

(
1 2
2 1

)
• B =

(
1 2
−1 −2

)

Solution:

For matrix A

We first get the characteristic polynomial of A. Since this is a 2× 2 matrix
(Poonen Theorem 6.8), it’s easiest to just note that TrA = 1 + 1 = 2 and
detA = 1 · 1− 2 · 2 = −3 to get

λ2 − 2λ− 3.

Of course, if you like you can also do the long way to get the same result:

det(A− λI) = det

(
1− λ 2
2 1− λ

)
= (1− λ)(1− λ)− 2 · 2

= (1− λ)2 − 4 = 1− 2λ+ λ2 − 4 = λ2 − 2λ− 3.

Anyway, the two roots are λ1 = 3 and λ2 = −1.

For each eigenvalue, we solve the system (A− λI)v = 0 where v =

(
v
w

)
.

• Eigenvalue λ1 = 3: We solve:

(A− 3I)v =

(
1− 3 2
2 1− 3

)(
v
w

)
=

(
−2 2
2 −2

)(
v
w

)
=

(
0
0

)
This gives the system:

−2v + 2w = 0, 2v − 2w = 0

Both equations reduce to:
v = w

Thus, the eigenvectors corresponding to λ1 = 3 are all the multiples
of:

v1 =

(
1
1

)
.
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• Eigenvalue λ2 = −1: We solve:

(A+ I)v =

(
1 + 1 2
2 1 + 1

)(
v
w

)
=

(
2 2
2 2

)(
v
w

)
=

(
0
0

)
This gives the system:

2v + 2w = 0, 2v + 2w = 0

Both equations reduce to:
v = −w

Thus, the eigenvectors corresponding to λ1 = 3 are all the multiples
of:

v2 =

(
1
−1

)
.

For matrix B

Now we do the same for B. Since TrB = 1 + (−2) = −1 and detB =
1 · (−2)− 2 · (−1) = 0 the characteristic polynomial is given by

λ2 + λ = 0.

The two eigenvectors are therefore

λ1 = 0, λ2 = −1.

For each eigenvalue, we solve (B − λI)v = 0.

• Eigenvalue λ1 = 0: We solve:

Bv =

(
1 2
−1 −2

)(
v
w

)
=

(
0
0

)
.

This gives the system:

v + 2w = 0, −v − 2w = 0.

Both equations reduce to:

v = −2w.

Thus, the eigenvectors corresponding to λ1 = 0 are all the multiples
of:

v1 =

(
−2
1

)
.
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• Eigenvalue λ2 = −1: We solve:

(B + I)v =

(
1 + 1 2
−1 −2 + 1

)(
v
w

)
=

(
2 2
−1 −1

)(
v
w

)
=

(
0
0

)
.

This gives the system:

2v + 2w = 0, −v − w = 0.

Both equations reduce to:
v = −w.

Thus, the eigenvectors corresponding to λ2 = −1 are all the scalar
multiples of

v2 =

(
1
−1

)
.

2. Consider the matrix C =

−1 0 1
−3 4 1
0 0 2

.

• What are the eigenvalues of C?
• What are the corresponding eigenvectors (up to scalar multiple)?

Solution: This is a 3× 3 matrix, so we have to actually calculate the char-
acteristic polynomial. The characteristic polynomial is given by:

det(C − λI) = 0

where I is the identity matrix and λ is the eigenvalue. We compute C − λI:

C − λI =

−1 0 1
−3 4 1
0 0 2

− λ

1 0 0
0 1 0
0 0 1

 =

−1− λ 0 1
−3 4− λ 1
0 0 2− λ

 .

Now, we compute the determinant:

det(C − λI) = det

−1− λ 0 1
−3 4− λ 1
0 0 2− λ

 .

We expand this determinant along the third row:

det(C − λI) = (2− λ) · det
(
−1− λ 0
−3 4− λ

)
.
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Now, we compute the 2× 2 determinant:

det

(
−1− λ 0
−3 4− λ

)
= (−1− λ)(4− λ)− (0)(−3) = (λ+ 1)(λ− 4).

Hence the characteristic polynomial is exactly

(λ+ 1)(λ− 4)(2− λ) = 0.

The eigenvalues are hence given by

λ1 = 2

λ2 = 4

λ3 = −1.

For each eigenvalue, we solve the system (C − λI)v = 0, where v =

v1
v2
v3

.

• Eigenvalue λ1 = 2: We solve:

(C − 2I)v =

−1− 2 0 1
−3 4− 2 1
0 0 2− 2

v1
v2
v3


=

−3 0 1
−3 2 1
0 0 0

v1
v2
v3

 =

0
0
0

 .

This gives the system of equations:

−3v1 + v3 = 0, −3v1 + 2v2 + v3 = 0.

From the first equation, we get v3 = 3v1. Substituting this into the
second equation:

−3v1 + 2v2 + 3v1 = 0 =⇒ 2v2 = 0 =⇒ v2 = 0.

Thus, the eigenvector corresponding to λ1 = 2 is (up to constant mul-
tiple):

v1 =

1
0
3

 .

• Eigenvalue λ2 = 4: We solve:

(C − 4I)v =

−1− 4 0 1
−3 4− 4 1
0 0 2− 4

v1
v2
v3


=

−5 0 1
−3 0 1
0 0 −2

v1
v2
v3

 =

0
0
0

 .
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This gives the system of equations:

−5v1 + v3 = 0, −3v1 + v3 = 0, −2v3 = 0.

From the third equation, we get v3 = 0. Substituting v3 = 0 into the
first and second equations gives v1 = 0. Therefore, v2 is free to vary.
Thus, the eigenvector corresponding to λ2 = 4 is up to constant mul-
tiple:

v2 =

0
1
0

 .

• Eigenvalue λ3 = −1: We solve:

(C + I)v =

−1 + 1 0 1
−3 4 + 1 1
0 0 2 + 1

v1
v2
v3


=

 0 0 1
−3 5 1
0 0 3

v1
v2
v3

 =

0
0
0

 .

This gives the system of equations:

v3 = 0, −3v1 + 5v2 = 0, 3v3 = 0.

From the second equation, we get v1 = 5
3
v2. Thus, the eigenvector

corresponding to λ3 = −1 is (up to constant multiple):

v3 =

5
3
0

 .

3. For any real numbers a and b, compute eigenvalues and eigenvectors of the
following matrices.

• A =

(
a 0
0 b

)
• B =

(
a 1
0 a

)
.

When a = b, what is the difference between the answers for A and B?

Solution: For the matrix A, one could follow the brute-force procedure
in problem 1 again. But it might be easier to find the eigenvectors by
inspection:
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• A

(
1
0

)
=

(
a
0

)
; hence e1 (and its multiples) are eigenvectors with

eigenvalue a.

• A

(
0
1

)
=

(
0
b

)
; hence e1 (and its multiples) are eigenvectors with

eigenvalue b.

When a 6= b, this means A has eigenvalues a and b with multiples of the
basis vectors as eigenvectors. (Indeed, this checks out with TrA = a+ b and
detA = ab.) When a = b, however, the matrix A = aI has every vector of
R2 as an eigenvector of eigenvalue a; see Remark 6.13 of Poonen.
For the matrix B, because TrB = 2a and detA = a2, the characteristic
polynomial is

λ2 − 2aλ+ a2 = (λ− a)2.

Hence the only eigenvalue is a. We will show, however, there is only a single

eigenline. Indeed, set
(
v
w

)
as an eigenvector. We have

(B − aI)

(
v
w

)
=

(
0 1
0 0

)(
v
w

)
=

(
w
0

)
.

Hence, the eigenvalues for B are exactly those with w = 0, i.e. the multiples

of the basis vector e1 =

(
1
0

)
.

To summarize the answer in a table:

Problem Eigenvalues Eigenvectors
Matrix A, when a 6= b a and b Multiples of e1 (for a)

Multiples of e2 (for b)
Matrix A, when a = b a Every vector in R2

Matrix B a Multiples of e1 only.

(This can feel wrong, because B seems like it is “missing” one dimension
of eigenvectors. This phenomenon only happens when the characteristic
polynomial has repeated roots. If you are curious to see what happens in
higher dimensions, the correct keywords to search for are “Jordan normal
form”.)
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