Quick answer key to R03

ChatGPT 40

11 September 2024

Use the table of contents below to skip to a specific part without seeing spoilers to the other parts.

I just used ChatGPT to write this one quickly. ChatGPT can make mistakes, so if you spot anything that's wrong, flag me to ask.

Contents

1	Pro	blem 1
	1.1	Part (a)
	1.2	Part (b)
	1.3	Part (c)
	1.4	Part (d)
2	2.1	blem 2 (a) Transformation of the unit square by $T = \begin{pmatrix} 2 & 3 \\ 0 & 1 \end{pmatrix}$
	2.2	(b) Reflection Across the Line $y = -x$
	2.3	(c) Linear Transformation in \mathbb{R}^3
	2.4	(d) Projection onto the Vector $\mathbf{w} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \dots \dots \dots$

1 Problem 1

1.1 Part (a)

Calculate AB and BA.

First, we compute AB:

$$AB = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} -3 & 1 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 2(-3) + 1(2) & 2(1) + 1(0) \\ 1(-3) + 2(2) & 1(1) + 2(0) \end{pmatrix} = \begin{pmatrix} -6 + 2 & 2 \\ -3 + 4 & 1 \end{pmatrix} = \begin{pmatrix} -4 & 2 \\ 1 & 1 \end{pmatrix}.$$

Now, we compute BA:

$$BA = \begin{pmatrix} -3 & 1\\ 2 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1\\ 1 & 2 \end{pmatrix} = \begin{pmatrix} -3(2) + 1(1) & -3(1) + 1(2)\\ 2(2) + 0(1) & 2(1) + 0(2) \end{pmatrix} = \begin{pmatrix} -6 + 1 & -3 + 2\\ 4 + 0 & 2 + 0 \end{pmatrix} = \begin{pmatrix} -5 & -1\\ 4 & 2 \end{pmatrix}.$$

1.2 Part (b)

Calculate the matrix A^{-1} .

To calculate the inverse of A, we use the formula for a 2×2 matrix:

$$A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$
, where $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

First, compute the determinant of A:

$$\det(A) = 2(2) - 1(1) = 4 - 1 = 3.$$

Now, the inverse of A is:

$$A^{-1} = \frac{1}{3} \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} \end{pmatrix}.$$

1.3 Part (c)

Check directly that $AA^{-1} = A^{-1}A = I$. We compute AA^{-1} :

$$AA^{-1} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} \end{pmatrix}$$
$$= \begin{pmatrix} 2 \begin{pmatrix} \frac{2}{3} \end{pmatrix} + 1 \begin{pmatrix} -\frac{1}{3} \end{pmatrix} & 2 \begin{pmatrix} -\frac{1}{3} \end{pmatrix} + 1 \begin{pmatrix} \frac{2}{3} \end{pmatrix} \\ 1 \begin{pmatrix} \frac{2}{3} \end{pmatrix} + 2 \begin{pmatrix} -\frac{1}{3} \end{pmatrix} & 1 \begin{pmatrix} -\frac{1}{3} \end{pmatrix} + 2 \begin{pmatrix} \frac{2}{3} \end{pmatrix} \end{pmatrix}$$
$$= \begin{pmatrix} \frac{4}{3} - \frac{1}{3} & -\frac{2}{3} + \frac{2}{3} \\ \frac{2}{3} - \frac{2}{3} & -\frac{1}{3} + \frac{4}{3} \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I.$$

Similarly, $A^{-1}A = I$.

1.4 Part (d)

Solve the system of equations using A^{-1} .

The system of equations is:

$$2x + y = 7$$
, $x + 2y = 11$.

This can be written as the matrix equation:

$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 7 \\ 11 \end{pmatrix}.$$

Multiplying both sides by A^{-1} :

$$\begin{pmatrix} x \\ y \end{pmatrix} = A^{-1} \begin{pmatrix} 7 \\ 11 \end{pmatrix} = \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} \end{pmatrix} \begin{pmatrix} 7 \\ 11 \end{pmatrix} = \begin{pmatrix} \frac{2}{3}(7) + -\frac{1}{3}(11) \\ -\frac{1}{3}(7) + \frac{2}{3}(11) \end{pmatrix} = \begin{pmatrix} \frac{14}{3} - \frac{11}{3} \\ -\frac{7}{3} + \frac{22}{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 5 \end{pmatrix}.$$

So, the solution is x = 1, y = 5.

Check the solution.

Substituting x = 1 and y = 5 into the original equations:

$$2(1) + 5 = 7, \quad 1 + 2(5) = 11,$$

both of which are true, so the solution is correct.

2 Problem 2

2.1 (a) Transformation of the unit square by $T = \begin{pmatrix} 2 & 3 \\ 0 & 1 \end{pmatrix}$. We apply T to each vertex of the unit square:

$$T(0,0) = \begin{pmatrix} 2 & 3 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

$$T(0,1) = \begin{pmatrix} 2 & 3 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \end{pmatrix},$$

$$T(1,0) = \begin{pmatrix} 2 & 3 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix},$$

$$T(1,1) = \begin{pmatrix} 2 & 3 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ 1 \end{pmatrix}.$$

The new vertices of the transformed square are (0, 0), (3, 1), (2, 0), and (5, 1).

2.2 (b) Reflection Across the Line y = -x

The matrix A associated with reflection across the line y = -x is found by observing how the reflection changes the coordinates of a point (x, y) to (-y, -x).

For the standard basis vectors:

$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 reflects to $\begin{pmatrix} 0 \\ -1 \end{pmatrix}$, $\mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ reflects to $\begin{pmatrix} -1 \\ 0 \end{pmatrix}$.

Thus, the matrix representing this reflection is:

$$A = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}.$$

2.3 (c) Linear Transformation in \mathbb{R}^3

The linear transformation f acts on vectors $\mathbf{v} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ by:

$$f\begin{pmatrix}x\\y\\z\end{pmatrix} = \begin{pmatrix}3x-2z\\x+y+z\\4y+z\end{pmatrix}.$$

To find the matrix associated with this transformation, we determine how the transformation acts on the standard basis vectors $\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$,

and
$$\mathbf{e}_3 = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$
:
 $f(\mathbf{e}_1) = f\begin{pmatrix} 1\\0\\0 \end{pmatrix} = \begin{pmatrix} 3\\1\\0 \end{pmatrix}, \quad f(\mathbf{e}_2) = f\begin{pmatrix} 0\\1\\0 \end{pmatrix} = \begin{pmatrix} 0\\1\\4 \end{pmatrix}, \quad f(\mathbf{e}_3) = f\begin{pmatrix} 0\\0\\1 \end{pmatrix} = \begin{pmatrix} -2\\1\\1 \end{pmatrix}$

Thus, the matrix associated with the transformation is:

$$A = \begin{pmatrix} 3 & 0 & -2 \\ 1 & 1 & 1 \\ 0 & 4 & 1 \end{pmatrix}.$$

2.4 (d) Projection onto the Vector $\mathbf{w} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$

The answer is

$$A = \begin{pmatrix} \frac{1}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{4}{5} \end{pmatrix}.$$

This follows by showing \mathbf{e}_1 and \mathbf{e}_2 project to $\begin{pmatrix} 1/5\\2/5 \end{pmatrix}$ and $\begin{pmatrix} 2/5\\4/5 \end{pmatrix}$ respectively.¹ Recall from R02 the projection of a vector $\mathbf{v} \in \mathbb{R}^2$ onto the vector $\mathbf{w} = \begin{pmatrix} 1\\2 \end{pmatrix}$ is given by the formula:

$$\frac{\mathbf{v}\cdot\mathbf{w}}{\mathbf{w}\cdot\mathbf{w}}\mathbf{w}$$

$$A = \frac{1}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w} \mathbf{w}^{T} = \frac{1}{5} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \end{pmatrix}.$$

Carrying out the matrix multiplication:

$$A = \frac{1}{5} \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} = \begin{pmatrix} \frac{1}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{4}{5} \end{pmatrix}.$$

Thus, the matrix for the projection onto $\mathbf{w} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ is:

$$A = \begin{pmatrix} \frac{1}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{4}{5} \end{pmatrix}.$$

¹ChatGPT provided a solution by citing a formula that I don't think was covered in the class, that's basically a cheat code in my opinion. But here it is if you want to see it. The projection matrix formula for projecting onto \mathbf{w} is: