EGMO 2025/4 Evan Chen

Twitch Solves ISL

Episode 163

Problem

Let ABC be an acute triangle with incenter I and $AB \neq AC$. Let lines BI and CI intersect the circumcircle of ABC at $P \neq B$ and $Q \neq C$, respectively. Consider points R and S such that AQRB and ACSP are parallelograms. Let T be the point of intersection of lines RB and SC. Prove that points R, S, T, and I are concyclic.

Video

https://youtu.be/Nu_RjYVYHPw

External Link

https://aops.com/community/p34542424

Solution

First, we get rid of point T by noting that

$$\measuredangle RTS = \measuredangle (RT, ST) = \measuredangle (QA, PA) = \measuredangle QAP.$$

Hence, it suffices to calculate $\measuredangle RIS$. However, using the vector identity

$$\vec{R} = \vec{B} + \vec{Q} - \vec{A}$$
$$\vec{S} = \vec{C} + \vec{P} - \vec{A}$$

we can conclude that

$$\measuredangle(\vec{R}-\vec{I},\vec{S}-\vec{I}) = \measuredangle(\vec{B}+\vec{Q}-\vec{I}-\vec{A},\vec{C}+\vec{P}-\vec{I}-\vec{A}) = \measuredangle NKM$$

where $K = \overline{PQ} \cap \overline{AI}$ is the midpoint of \overline{IA} , and M and N the midpoints of \overline{PC} and \overline{BQ} . Hence, it suffices to prove: $\angle QAP = \angle NKM.$

In fact, we have:

Claim. $\triangle BIC \stackrel{+}{\sim} \triangle QAP$.

Proof. Because $\measuredangle CBI = \measuredangle IBA = \measuredangle PBA = \measuredangle PQA$ and similarly $\measuredangle BCI = \measuredangle QPA$. \Box

Hence by the *mean geometry theorem* we in fact have the similarity

$$\triangle BIC \stackrel{+}{\sim} \triangle NKM \stackrel{+}{\sim} \triangle QAP$$

since each vertex of $\triangle NKM$ is the midpoint of the two corresponding vertices of $\triangle BIC \sim \triangle QA$. The resulting angle similarity is then immediate.