EGMO 2025/2 Evan Chen

Twitch Solves ISL

Episode 163

Problem

An infinite increasing sequence $a_1 < a_2 < a_3 < \cdots$ of positive integers is called *central* if for every positive integer n, the arithmetic mean of the first a_n terms of the sequence is equal to a_n .

Show that there exists an infinite sequence b_1, b_2, b_3, \ldots of positive integers such that for every central sequence $(a_n)_n$, there are infinitely many positive integers n with $a_n = b_n$.

Video

https://youtu.be/qm5tzRWuQpI

External Link

https://aops.com/community/p34560823

Solution

We choose $b_n = 2n - 1$.

Fix a central sequence. We say an integer N appears if $a_i = N$ for some i; this implies

$$a_1 + \dots + a_N = N^2$$

and we use freely that arbitrarily large integers appear. We define the sequence of gaps $(a_{i+1} - a_i)_{i>1}$; if $g = a_{i+1} - a_i$, we say a gap of g occurs at index *i*.

We perform casework on whether 1 appears infinitely often among the gaps.

Case where infinitely many gaps equal 1. Suppose there are infinitely many integers N such that N - 1 and N both appear. Then

$$a_N = (a_1 + \dots + a_N) - (a_1 + \dots + a_{N-1})^2 = N^2 - (N-1)^2 = 2N - 1$$

so each such integer N works.

Case where finitely many gaps equal 1. In the rest of the solution we let L denote the number of gaps of 1.

Claim. There are also at most L gaps greater than 2. In other words, there exists constants k and n_0 such that we have $a_n = 2n + k$ for all $n > n_0$.

Proof. Consider any integer N which appears and is large enough that all gaps of 1 occur before index N. Choose another integer C such that N + C appears; then

$$(N+C)^{2} = a_{1} + \dots + a_{N+C}$$

= $N^{2} + a_{N+1} + a_{N+2} + \dots + a_{N+C}$
 $\geq N^{2} + (a_{N}+2) + (a_{N}+4) + \dots + (a_{N}+2C)$
= $N^{2} + C \cdot a_{N} + (2 + \dots + 2C)$
= $N^{2} + C \cdot A_{N} + C(C+1)$
= $N^{2} + (a_{N}+1) \cdot C + C^{2}$

Comparing these, we find that $a_N \leq 2N - 1$.

Now assume for contradiction there were more than L gaps of length 2. If we further pick N large enough that at least L + 1 gaps of length 2 occur before index N, then the sum of the gaps up to N is large enough to give $a_N > 2N - 1$, which is a contradiction. \Box

In particular, if $n > n_0$ is large enough that $2n + k > n_0$ then both 2n + k + 2 and 2n + k appear and

$$(2n+k+2)^2 - (2n+k)^2 = (1+\dots+a_{2n+k+2}) - (1+\dots+a_{2n+k})$$
$$= a_{2n+k+2} + a_{2n+k+1}$$
$$= 2(2n+k+2) + k + 2(2n+k+1) + k$$
$$\implies 4(2n+k) + 4 = (4n+2k+4) + k + (4n+2k+2) + k$$
$$\implies k = -1$$

so in fact $a_n = 2n - 1$ for almost all integers n in this case.