arXiv 1906.10482 Evan Chen

Twitch Solves ISL

Episode 159

Problem

Find all positive integers n for which there exists a labeled directed graph G on n vertices satisfying the following properties:

- As an undirected graph, G is connected.
- For any labeled tournament T, the number of copies of G as a directed subgraph (not necessarily induced) in T only depends on the number of vertices in T.

For example, n = 2 is valid, as a single edge appears $\binom{m}{2}$ times in any tournament on m vertices.

Video

https://youtu.be/d4STJiEsQXE

External Link

https://arxiv.org/abs/1906.10482

Solution

The answer is that n must be a power of 2.

Proof of necessity. We only need consider *n*-vertex tournaments T for this step. Let e(G) denote the number of edges in G. Note that the number of copies of G in a random tournament has expected value n!

because there are n! possible ways to assign vertices of G to labels, and each such assignment works with probability $2^{-e(G)}$. However, we also know that

 $\overline{2e(G)}$

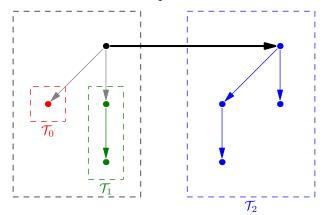
$$\nu_2(n!) = n - s_2(n)$$
$$e(G) \ge n - 1$$

the latter inequality since G is connected. So, this is only possible if n is a power of 2 (and e(G) = n - 1).

Construction. We'll let \mathcal{T}_0 , \mathcal{T}_1 , \mathcal{T}_2 , \mathcal{T}_3 , ... be the sequence of binomial trees, with \mathcal{T}_k having 2^k vertices, defined recursively as rooted trees as follows:

- \mathcal{T}_0 is a single vertex.
- \mathcal{T}_k consists of two copies of \mathcal{T}_{k-1} with a directed edge joining the roots of the trees. Alternatively, it can be viewed as a single root vertex of outdegree k pointing to the roots of a copy of $\mathcal{T}_0, \ldots, \mathcal{T}_{k-1}$.

For example, the picture below shows \mathcal{T}_3 . Note that it consists of two copies of \mathcal{T}_2 with one edge joining the root vertices of the copies.



We contend that \mathcal{T}_k works for $n = 2^k$.

The proof is by induction. Let c_k be the claimed number of copies of \mathcal{T}_k in every 2^k -vertex tournament (so $c_0 = 1$, for example; this is our base case). Then in general, we get the recursion

$$c_k = \left(\frac{1}{2} \binom{2^k}{2^{k-1}}\right) \cdot c_{k-1}^2$$

by counting as follows: split the 2^k vertices into two parts, find copies of \mathcal{T}_{k-1} in each part (c_{k-1} ways to choose each), and note that the edge between their roots will point in one of the two directions.

Finally, if $m \ge n = 2^k$, it follows the number of copies of \mathcal{T}_k in an *m*-vertex tournament will be exactly $\binom{m}{2^k} \cdot c_k$, completing the construction.