OMF 2025/4 Evan Chen

Twitch Solves ISL

Episode 159

Problem

Determine all bounded sequences of positive integers a_1, a_2, \ldots such that for any prime number p and for any index $n \ge 1$, the number $a_n a_{n+1} \ldots a_{n+p-1} - a_{n+p}$ is a multiple of p.

Video

https://youtu.be/PilRVBNcWxY

Solution

Only constant sequences can work, and by Fermat's little theorem they all work. Let $M = \max a_i$.

Claim 1. The sequence is periodic.

Proof. Take p > M. The residues modulo p of any p consecutive terms determine the next term, and there are only p^p possibilities. So it's eventually periodic modulo p, but p > M, so one can work backwards and it's actually periodic.

Let T be the period of the sequence. Again consider arbitrary $p > 2 \max(M, T)$ with $p \equiv -1 \pmod{T}$. Then note

$$a_n a_{n+1} \dots a_{n+p-1} \equiv a_{n+p} \pmod{p}$$
$$a_{n+1} a_{n+2} \dots a_{n+p} \equiv a_{n+p+1} \pmod{p}$$
$$\implies \frac{a_{n+p}^2}{a_n} \equiv a_{n+p+1} \pmod{p}$$

Taking indices modulo T gives

$$a_{n+1}^2 \equiv a_n^2 \pmod{p}$$

but since p > 2M, we get $a_n = a_{n+1}$, so the sequence is constant.

Remark. Without the condition that a_n is bounded, there are many more examples, like $a_n = cn + c'$ for any constants c and c'.