Twitch 158.2 Evan Chen

Twitch Solves ISL

Episode 158

Problem

Let ABC be a triangle with circumcircle Γ and incircle γ . Let γ_a , γ_b , γ_c be the reflections of γ over the sides BC, CA, AB. Let \mathcal{R} be the region of points which are contained inside Γ and also contained in at least one of γ_a , γ_b , γ_c . [TODO: diagram] Prove that the area of \mathcal{R} is at least the area of γ .

Video

https://youtu.be/LfIOXTYSFGA

Solution

Let P be a point inside γ (or really any point inside ABC). We will show the reflection of P across at least one of the sides lies inside Γ ; if so that will solve the problem.

If the triangle is non-acute, say with $\angle A \ge 90^{\circ}$, then the reflection of P across BC always lies inside Γ .

Otherwise, assume for contradiction all three reflections P lie outside. Then

$$\angle BPC > 2\angle A \\ \angle CPA > 2\angle B \\ \angle APB > 2\angle C.$$

Adding these gives a contradiction.