H3507300 Evan Chen

Twitch Solves ISL

Episode 156

Problem

Let \oplus denote bitwise XOR. Solve over $\mathbb{Z}_{\geq 0}$ the functional equation

 $f(x \oplus f(y) + y) = (f(x) \oplus y) + y.$

Video

https://youtu.be/v_Ng9xsa26g

External Link

https://aops.com/community/p34077999

Solution

The answer is f the identity, which obviously works. Let P(x, y) denote the given statement.

Claim. $f(t) \ge t$ for every t.

Proof. Note P(f(t), t) gives $f(t) = f(f(t)) \oplus t + t \ge t$.

Claim. f(0) = 0.

Proof. Note that

$$P(0,y) \implies y \oplus f(0) + y = f(f(y) + y) \ge f(y) + y \ge 2y$$

Hence $y \oplus f(0) \ge y$ for all integers $y \ge 0$. This forces f(0) = 0 (e.g. by taking y = f(0)).

Now, we find that

$$P(0,y) \implies 2y = f(y+f(y))$$

If f(y) > y for any y, that RHS is at least 2y, contradiction.