ELMO 2024/4 Evan Chen

Twitch Solves ISL

Episode 151

Problem

Let n be a positive integer. Find the number of sequences $(a_0, a_1, a_2, \ldots, a_{2n})$ of integers in $\{0, \ldots, n\}$ such that for all integers $0 \le k \le n$ and all integers $m \ge 0$, there exists an integer $k \le i \le 2k$ such that $\lfloor k/2^m \rfloor = a_i$.

Video

https://youtu.be/J4QtlbYxBDU

External Link

https://aops.com/community/p30985799

Solution

The answer is 2^n . We note $a_0 = 0$ and ignore it going forward, focusing only on a_i for $i \ge 1$.

In what follows, for each positive integer t we let

$$D(t) \coloneqq \{t, \lfloor t/2 \rfloor, \lfloor t/4 \rfloor, \dots\}.$$

For example, $D(13) = \{13, 6, 3, 1, 0\}$. Then the problem condition is equivalent to saying that every element of D(k) appears in $\{a_k, \ldots, a_{2k}\}$.

We prove the following structure claim about all the valid sequences.

Claim. In any valid sequence, for each $0 \le k \le n$,

- a_{2k-1} and a_{2k} are elements of D(k); and
- a_k, \ldots, a_{2k} consist of all the numbers from 0 to k each exactly once.

Proof. We proceed by induction; suppose we know it's true for k and want it true for k + 1. By induction hypothesis:

- $\{a_k, \ldots, a_{2k}\}$ contains each of 0 to k exactly once;
- a_k is an element of $D(\lceil k/2 \rceil)$;
- We also know $\{a_{k+1}, \ldots, a_{2k+2}\}$ contains all elements of D(k+1) by problem condition.

However, note that

$$D\left(\left\lceil k/2\right\rceil\right) \subseteq D(k+1)$$

so that means either

$$(a_{2k+1} = a_k \text{ and } a_{2k+2} = k+1)$$
 OR $(a_{2k+1} = k+1 \text{ and } a_{2k+2} = a_k)$.

We return to the problem of counting the sequences. It suffices to show that if (a_0, \ldots, a_{2n}) is a valid sequence, there are exactly two choices of ordered pairs $(x, y) \in \{0, \ldots, n+1\}$ such that $(a_0, \ldots, a_{2n}, x, y)$ is a valid sequence. However, the structure claim above implies that $\{x, y\} = \{a_n, n+1\}$, so there are at most two choices. Moreover, both of them work by the structure claim again (because k = n = 1 is the only new assertion when augmenting the sequence, and it holds also by the structure claim). This completes the proof.

Remark. Here are some examples to follow along with. When n = 4 the 16 possible values of $(a_4, a_5, a_6, a_7, a_8)$ are

Now the point is that when moving to n = 5, the element $a_4 \in \{0, 1, 2\} = D(2) \subseteq D(5)$ is chopped-off, and a_9 and a_{10} must be 5 and the chopped-off element in some order. So each of these sequences extends in exactly two ways, as claimed.