EGMO 2022/1 Evan Chen

Twitch Solves ISL

Episode 149

Problem

Let ABC be an acute-angled triangle in which BC < AB and BC < CA. Let point P lie on segment AB and point Q lie on segment AC such that $P \neq B$, $Q \neq C$ and BQ = BC = CP. Let T be the circumcenter of triangle APQ, H the orthocenter of triangle ABC, and S the point of intersection of the lines BQ and CP. Prove that T, H, and S are collinear.

Video

https://youtu.be/tjxbdw41fzc

External Link

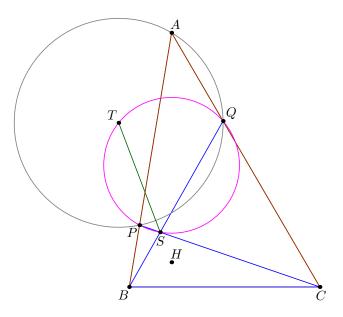
https://aops.com/community/p24921857

Solution

We start by eliminating H:

Claim. The point *H* is the incenter of $\triangle SBC$.

Proof. Note that because \overline{BH} is the angle bisector of $\angle SBC$ in isosceles triangle BQC; similarly, \overline{CH} bisects $\angle SCB$.



Next we have the following angle chasing claim.

Claim. We have TPSQ cyclic.

Proof. Note that

$$\measuredangle PTQ = 2\measuredangle PAQ = 2\measuredangle BAC \measuredangle PSQ = \measuredangle CSB = -(\measuredangle SBC + \measuredangle BCS) = \measuredangle CBQ + \measuredangle PCB = -2\measuredangle QCB - 2\measuredangle CBP = -2\measuredangle ACB - 2\measuredangle CBA = 2\measuredangle BAC.$$

Hence $\measuredangle PTQ = \measuredangle PSQ$ as needed.

Hence from TP = TQ we see \overline{ST} is a bisector of $\angle QSP$. Since $\angle QSP > 90^{\circ}$, it follows \overline{ST} is an interior angle bisector of $\angle QSP$. This concludes the proof.