EGMO 2014/4 Evan Chen

Twitch Solves ISL

Episode 147

Problem

Determine all positive integers $n \ge 2$ for which there exist integers $x_1, x_2, \ldots, x_{n-1}$ satisfying the condition that if 0 < i < n, 0 < j < n, $i \ne j$ and n divides 2i + j, then $x_i < x_j$.

Video

https://youtu.be/Ce0D5Uzxnew

External Link

https://aops.com/community/p3460731

Solution

The answer is $n = 2^k$ and $n = 3 \cdot 2^k$, for each $k \ge 0$ (excluding n = 1).

We work with the set $S = \{1, 2, ..., n-1\} \mod n$ of nonzero residues modulo n instead. We define the relation \prec on S to mean that $2i + j \equiv 0 \pmod{n}$ and $i \neq j$, for $i, j \in S$. Then the problem satisfies the conditions if and only if \prec has no cycles, i.e. \prec imposes a partial order on S.

The existence of a cycle for \prec is equivalent to some choice of $t_1 \in S$ and an integer $m \geq 2$ such that

$$t_1 \prec t_2 \prec \cdots \prec t_m \prec t_1.$$

Unwinding the definition, this is equivalent to two conditions:

• We need $t_i \not\equiv t_{i+1} \pmod{n}$ for i = 1, ..., m (where $t_{m+1} = t_1$). This is equivalent to

$$3 \cdot 2^{i-1} \cdot t_1 \equiv 0 \pmod{n} \qquad (\heartsuit)$$

• For $t_m \prec t_1$ to be true, we need

$$(-2)^m t_1 \equiv t_1 \pmod{n} \iff ((-2)^m - 1) t_1 \equiv 0 \pmod{n}.$$
 (\blacklozenge)

We now analyze three cases:

- Let $n = 2^k$. Suppose for contradiction some cycle exists. Then $(-2)^m 1$ is coprime to n, so (\bigstar) would imply $t_1 \equiv 0 \pmod{n}$, contradiction.
- Let $n = 3 \cdot 2^k$. Suppose for contradiction some cycle exists. If (\bigstar) holds for some m, then $2^k \mid t_1$, so the only possibility is that $t_1 \equiv \pm 2^k \pmod{n}$ and $3 \mid (-2)^m 1$. However, in that case (\heartsuit) is violated for i = 1, contradiction.
- Suppose n had an n has an odd divisor $d \mid n$ and $d \geq 5$. Then taking $t_1 = n/d$ and $m = \varphi(d)$, the equation (\blacklozenge) is true. Moreover, (\heartsuit) is true because there is at least one odd prime p with $\nu_p(n) > \nu_p(3t_1) = \nu_p(3n/d)$ (since $d \geq 5$ is odd). So indeed it's possible to construct a cycle.

Thus these are all the answers and the only answers.