EGMO 2024/5
 Evan Chen
 Twitch Solves ISL
 Episode 146

Problem

Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for all $x, y \in \mathbb{N}$:
(i) x and $f(x)$ have the same number of positive divisors.
(ii) if $x \nmid y$ and $y \nmid x$, then:

$$
\operatorname{gcd}(f(x), f(y))>f(\operatorname{gcd}(x, y)) .
$$

Video

https://youtu.be/Yh0r9zHgXYA

External Link

https://aops.com/community/p30440446

Solution

The answer is

$$
f(x)=\ell^{d(x)-1}
$$

where ℓ is a fixed prime, and $d(\bullet)$ is the divisor counting function. This works, because when $x \nmid y$ and $y \nmid x$ we obviously have $d(\operatorname{gcd}(x, y))<\min (d(x), d(y))$. So now we prove this is the only solution.

Obviously $f(1)=1$; we ignore this case further.
Note that $f(p)$ is always a prime for each prime p. But if p and q are two different primes, then apparently

$$
\operatorname{gcd}(f(p), f(q))>f(\operatorname{gcd}(p, q))=f(1) \geq 1
$$

and yet the left-hand side is the GCD of two primes. So this could only happen if they are the same prime; hence we conclude $f(p)$ is constant, say ℓ.

Claim. Every output of f besides $f(1)$ must be a multiple of ℓ
Proof. To show $\ell \mid f(x)$ for $x>1$, take y to be any prime not dividing x. Then $\operatorname{gcd}(f(x), \ell)>1$, as needed.

This allows us to extend our earlier claim as follows:
Claim. If p_{1}, \ldots, p_{k} are distinct primes and q_{1}, \ldots, q_{k} are primes then

$$
f\left(p_{1}^{q_{1}-1} \ldots p_{k}^{q_{k}-1}\right)=\ell^{q_{1} \ldots q_{k}-1} .
$$

Proof. By induction on k. For the base case $k=1$, we know $f\left(p^{q-1}\right)$ needs to be a multiple of ℓ, and the only multiple of ℓ with q prime divisors is ℓ^{q-1}.

Suppose $k \geq 2$ and WLOG $q_{1} \geq q_{2} \geq \cdots \geq q_{k}$. We let p be any other prime. Then

$$
\operatorname{gcd}\left(f\left(p_{1}^{q_{1}-1} \ldots p_{k}^{q_{k}-1}\right), f\left(p_{1}^{q_{1}-1} \ldots p_{k-1}^{q_{k-1}-1} p\right)\right)>f\left(p_{1}^{q_{1}-1} \ldots p_{k-1}^{q_{k-1}-1}\right)=q_{1} q_{2} \ldots q_{k-1} .
$$

Hence $f\left(p_{1}^{q_{1}-1} \ldots p_{k}^{q_{k}-1}\right)$ is divisible by $\ell^{q_{1} \ldots q_{k-1}}$. There are no proper divisors of $q_{1} \ldots q_{k}$ exceeding $q_{1} \ldots q_{k-1}$, so this forces $f\left(p_{1}^{q_{1}-1} \ldots p_{k}^{q_{k}-1}\right)=\ell^{q_{1} \ldots q_{k}-1}$ exactly.

We will now attack the main problem in the following presentation:
Claim. Suppose $p_{1}, \ldots, p_{k}, r_{1}, \ldots, r_{m}$ are pairwise distinct primes, and q_{1}, \ldots, q_{k} are also prime numbers, and $e_{1}, \ldots, e_{m} \geq 2$. Let

$$
x=p_{1}^{q_{1}-1} \ldots p_{k}^{q_{k}-1} r_{1}^{e_{1}-1} \ldots r_{m}^{e_{m}-1}
$$

and set

$$
n=d(x)=q_{1} \ldots q_{k} e_{1} \ldots e_{m} .
$$

Then $f(x)=\ell^{n-1}$.
Proof. The proof is by induction on m, with the base case $m=0$ already done. For the inductive step, look at e_{m}. If e_{m} is prime there is nothing to do. Otherwise, $e_{m} \geq 3$, and we can take a prime q satisfying

$$
\frac{e_{m}}{2}<q<e_{m} .
$$

and let z be a random other prime not appearing already; then choosing

$$
\begin{aligned}
y & =p_{1}^{q_{1}-1} \ldots p_{k}^{q_{k}-1} r_{1}^{e_{1}-1} \ldots r_{m-1}^{q-1} z \\
\operatorname{gcd}(x, y) & =p_{1}^{q_{1}-1} \ldots p_{k}^{q_{k}-1} r_{1}^{e_{1}-1} \ldots r_{m-1}^{q-1} .
\end{aligned}
$$

Then

$$
\begin{aligned}
f(y) & =\ell^{2 q_{1} \ldots q_{k} \cdot e_{1} \ldots e_{m-1} \cdot q-1}>\ell^{n-1} \\
f(\operatorname{gcd}(x, y)) & =\ell^{q_{1} \ldots q_{k} \cdot e_{1} \ldots e_{m-1} \cdot q-1}=\ell^{n \cdot \frac{q}{e_{m}}-1}>\ell^{\frac{n}{2}-1} .
\end{aligned}
$$

It follows that $\nu_{\ell}(f(x))+1>\frac{n}{2}$. We know $n=d(f(x))=\prod_{p}\left(\nu_{p}(f(x))+1\right)$. If a number greater than $n / 2$ appears on the product of the RHS, then in fact the product consists only of n. This completes the induction.

