EGMO 2024/5 Evan Chen

TWITCH SOLVES ISL

Episode 146

Problem

Find all functions $f : \mathbb{N} \to \mathbb{N}$ such that for all $x, y \in \mathbb{N}$:

- (i) x and f(x) have the same number of positive divisors.
- (ii) if $x \nmid y$ and $y \nmid x$, then:

 $\gcd(f(x), f(y)) > f(\gcd(x, y)).$

Video

https://youtu.be/YhOr9zHgXYA

External Link

https://aops.com/community/p30440446

Solution

The answer is

$$f(x) = \ell^{d(x)-1}$$

where ℓ is a fixed prime, and $d(\bullet)$ is the divisor counting function. This works, because when $x \nmid y$ and $y \nmid x$ we obviously have $d(\operatorname{gcd}(x, y)) < \min(d(x), d(y))$. So now we prove this is the only solution.

Obviously f(1) = 1; we ignore this case further.

Note that f(p) is always a prime for each prime p. But if p and q are two different primes, then apparently

$$gcd(f(p), f(q)) > f(gcd(p, q)) = f(1) \ge 1$$

and yet the left-hand side is the GCD of two primes. So this could only happen if they are the same prime; hence we conclude f(p) is constant, say ℓ .

Claim. Every output of f besides f(1) must be a multiple of ℓ

Proof. To show $\ell \mid f(x)$ for x > 1, take y to be any prime not dividing x. Then $gcd(f(x), \ell) > 1$, as needed.

This allows us to extend our earlier claim as follows:

Claim. If p_1, \ldots, p_k are distinct primes and q_1, \ldots, q_k are primes then

$$f\left(p_1^{q_1-1}\dots p_k^{q_k-1}\right) = \ell^{q_1\dots q_k-1}$$

Proof. By induction on k. For the base case k = 1, we know $f(p^{q-1})$ needs to be a multiple of ℓ , and the only multiple of ℓ with q prime divisors is ℓ^{q-1} .

Suppose $k \ge 2$ and WLOG $q_1 \ge q_2 \ge \cdots \ge q_k$. We let p be any other prime. Then

$$\gcd\left(f(p_1^{q_1-1}\dots p_k^{q_k-1}), f(p_1^{q_1-1}\dots p_{k-1}^{q_{k-1}-1}p)\right) > f\left(p_1^{q_1-1}\dots p_{k-1}^{q_{k-1}-1}\right) = q_1q_2\dots q_{k-1}.$$

Hence $f(p_1^{q_1-1} \dots p_k^{q_k-1})$ is divisible by $\ell^{q_1 \dots q_{k-1}}$. There are no proper divisors of $q_1 \dots q_k$ exceeding $q_1 \dots q_{k-1}$, so this forces $f(p_1^{q_1-1} \dots p_k^{q_k-1}) = \ell^{q_1 \dots q_k-1}$ exactly.

We will now attack the main problem in the following presentation:

Claim. Suppose $p_1, \ldots, p_k, r_1, \ldots, r_m$ are pairwise distinct primes, and q_1, \ldots, q_k are also prime numbers, and $e_1, \ldots, e_m \ge 2$. Let

$$x = p_1^{q_1 - 1} \dots p_k^{q_k - 1} r_1^{e_1 - 1} \dots r_m^{e_m - 1}$$

and set

 $n = d(x) = q_1 \dots q_k e_1 \dots e_m.$

Then $f(x) = \ell^{n-1}$.

Proof. The proof is by induction on m, with the base case m = 0 already done. For the inductive step, look at e_m . If e_m is prime there is nothing to do. Otherwise, $e_m \ge 3$, and we can take a prime q satisfying

$$\frac{e_m}{2} < q < e_m.$$

and let z be a random other prime not appearing already; then choosing

$$y = p_1^{q_1 - 1} \dots p_k^{q_k - 1} r_1^{e_1 - 1} \dots r_{m-1}^{q-1} z$$
$$gcd(x, y) = p_1^{q_1 - 1} \dots p_k^{q_k - 1} r_1^{e_1 - 1} \dots r_{m-1}^{q-1}.$$

Then

$$f(y) = \ell^{2q_1 \dots q_k \cdot e_1 \dots e_{m-1} \cdot q - 1} > \ell^{n-1}$$

$$f(\gcd(x, y)) = \ell^{q_1 \dots q_k \cdot e_1 \dots e_{m-1} \cdot q - 1} = \ell^{n \cdot \frac{q}{e_m} - 1} > \ell^{\frac{n}{2} - 1}.$$

It follows that $\nu_{\ell}(f(x)) + 1 > \frac{n}{2}$. We know $n = d(f(x)) = \prod_{p} (\nu_{p}(f(x)) + 1)$. If a number greater than n/2 appears on the product of the RHS, then in fact the product consists only of n. This completes the induction.