# EGMO 2024/4 

## Evan Chen

## Twitch Solves ISL

Episode 146

## Problem

For a sequence $a_{1}<a_{2}<\cdots<a_{n}$ of integers, a pair $\left(a_{i}, a_{j}\right)$ with $1 \leq i<j \leq n$ is called interesting if there exists a pair $\left(a_{k}, a_{\ell}\right)$ of integers with $1 \leq k<\ell \leq n$ such that

$$
\frac{a_{\ell}-a_{k}}{a_{j}-a_{i}}=2
$$

For each $n \geq 3$, find the largest possible number of interesting pairs in a sequence of length $n$.

## Video

https://youtu.be/AawAbKQsCVM

## External Link

https://aops.com/community/p30440509

## Solution

The answer is $\binom{n}{2}-(n-2)$.
Construction. We take $a_{1}=0$ and $a_{i}=2^{i-2}$ for $i \geq 2$. For example, when $n=5$ we get the following figure:


We see that all the pairs $(i, j)$ are interesting except for the cases where $j=n$ and $i \in\{1,2, \ldots, n-2\}$. Indeed:

- If $i=1$ and $j<n$, then $a_{j}-a_{i}=2^{j-2}=\frac{a_{j+1}-a_{j}}{2}$.
- If $i>1$ and $j<n$, then $a_{j}-a_{i}=\frac{2 a_{j}-2 a_{i}}{2}=\frac{a_{j+1}-a_{i+1}}{2}$.
- If $i=n-1$ and $j=n$, then $a_{j}-a_{i}=2^{n-3}=\frac{a_{n}-a_{1}}{2}$.

Proof of bound. Let $m=\frac{a_{1}+a_{n}}{2}$. Notice that

- If $a_{j}>m$, then $(1, j)$ is never interesting.
- If $a_{i}<m$, then $(i, n)$ is never interesting.

This eliminates at least $(n-1)-1$ pairs, one for each index $k$ with $a_{k} \neq m$. (The pair $(1, n)$ is counted twice here.) This gives the claimed bound.

