EGMO 2024/4 Evan Chen

TWITCH SOLVES ISL

Episode 146

Problem

For a sequence $a_1 < a_2 < \cdots < a_n$ of integers, a pair (a_i, a_j) with $1 \le i < j \le n$ is called *interesting* if there exists a pair (a_k, a_ℓ) of integers with $1 \le k < \ell \le n$ such that

$$\frac{a_\ell - a_k}{a_j - a_i} = 2.$$

For each $n \ge 3$, find the largest possible number of interesting pairs in a sequence of length n.

Video

https://youtu.be/AawAbKQsCVM

External Link

https://aops.com/community/p30440509

Solution

The answer is $\binom{n}{2} - (n-2)$.

Construction. We take $a_1 = 0$ and $a_i = 2^{i-2}$ for $i \ge 2$. For example, when n = 5 we get the following figure:

We see that all the pairs (i, j) are interesting *except* for the cases where j = n and $i \in \{1, 2, ..., n-2\}$. Indeed:

- If i = 1 and j < n, then $a_j a_i = 2^{j-2} = \frac{a_{j+1} a_j}{2}$.
- If i > 1 and j < n, then $a_j a_i = \frac{2a_j 2a_i}{2} = \frac{a_{j+1} a_{i+1}}{2}$.
- If i = n 1 and j = n, then $a_j a_i = 2^{n-3} = \frac{a_n a_1}{2}$.

Proof of bound. Let $m = \frac{a_1 + a_n}{2}$. Notice that

- If $a_j > m$, then (1, j) is never interesting.
- If $a_i < m$, then (i, n) is never interesting.

This eliminates at least (n-1) - 1 pairs, one for each index k with $a_k \neq m$. (The pair (1, n) is counted twice here.) This gives the claimed bound.