EGMO 2024/3

Evan Chen

Twitch Solves ISL

Episode 146

Problem

We call a positive integer n peculiar if, for any positive divisor d of n the integer $d(d+1)$ divides $n(n+1)$. Prove that for any four different peculiar positive integers A, B, C and D, the following holds:

$$
\operatorname{gcd}(A, B, C, D)=1
$$

Video

https://youtu.be/EJS9br0gyqE

External Link

https://aops.com/community/p30433680

Solution

Note that 1 and any prime are peculiar. We classify all composite peculiar numbers in a series of claims.

Claim. A peculiar number n has at most two prime factors.
Proof. Let p be the smallest prime dividing n, and let $\frac{n}{p}=c$. Then

$$
\left.\frac{n}{p} \cdot\left(\frac{n}{p}+1\right) \right\rvert\, n(n+1)
$$

In particular,

$$
c+1 \mid c p \cdot(c p+1) .
$$

However,

$$
c p \cdot(c p+1) \equiv p(p-1) \quad(\bmod c+1) .
$$

So, since $p(p-1) \neq 0$, we get a bound

$$
c \leq p^{2}-p \Longrightarrow n=c p \leq p^{3}-p^{2}<p^{3} .
$$

Hence, $n<p^{3}$ and p is the smallest prime dividing n, n can have at most one additional prime factor.

Claim. The square of a prime is never peculiar.
Proof. If $n=p^{2}$ we need $p(p+1) \mid p^{2}\left(p^{2}+1\right)$, or $p+1 \mid p^{2}+1$, which never holds as $p^{2}+1 \equiv 2(\bmod p+1)$.

Claim. If $n=p q$ is peculiar for primes $p>q$, then $p=(q+1)(q-2)+1$.
Proof. Note that 6 is not peculiar (as $3 \cdot 4 \nmid 6 \cdot 7$). Assume $n>6$ and write the equations

$$
\left.\begin{aligned}
p(p+1) \mid p q(p q+1) & \Longleftrightarrow p+1 \mid q(p q+1)
\end{aligned} \Longleftrightarrow p+1|q(q-1) ~ \Longleftrightarrow q+1| p(p q+1) ~ \Longleftrightarrow q+1 \right\rvert\, p(p-1)
$$

In the second equation, since $p>q+1$, we find $\operatorname{gcd}(q+1, p)=0$ so

$$
p \equiv 1 \quad(\bmod q+1) .
$$

So let $p=1+k(q+1)$. On the other hand, we also note that

$$
2+k(q+1)=p+1 \leq q(q-1)
$$

and hence $k<q-1$; that is, $k \in\{1,2, \ldots, q-2\}$.
Now, if $p+1=2+k(q+1)$ is divisible by q, it follows $k \equiv-2(\bmod q)$ and therefore $k=q-2$ exactly. If it isn't, then we would have $p+1 \mid q-1$ which is impossible. So the claim is proved.

Hence, given a fixed prime ℓ, there are at most three peculiar numbers divisible by ℓ : namely

- ℓ itself;
- $\ell \cdot[(\ell+1)(\ell-2)+1]$, if the bracketed number is indeed prime;
- $\ell \cdot r$, if there is indeed a prime r such that $\ell=(r+1)(r-2)+1$.

Hence given four distinct peculiar numbers, they can have no common prime factor.

