EGMO 2024/2

Evan Chen

Twitch Solves ISL

Episode 146

Problem

Let $A B C$ be a triangle with $A C>A B$, and denote its circumcircle by Ω and incenter by I. Let its incircle meet sides $B C, C A, A B$ at D, E, F respectively. Let X and Y be two points on minor arcs $\widehat{D F}$ and $\widehat{D E}$ of the incircle, respectively, such that $\angle B X D=\angle D Y C$. Let line $X Y$ meet line $B C$ at K. Let T be the point on Ω such that $K T$ is tangent to Ω and T is on the same side of line $B C$ as A. Prove that lines $T D$ and $A I$ meet on Ω.

Video

https://youtu.be/Q1CLri5128I

External Link

https://aops.com/community/p30433677

Solution

We redefine the points in the reverse order: let M be the arc midpoint of minor arc $B C$, let T be the second intersection of ray $T D$ with Ω, and let K be the point on line $B C$ such that $\overline{K T}$ is tangent to Ω. Then we will show that if a line through K meets the incircle again at X and Y, then $\angle B X D=\angle D Y C$. A phantom point argument will then show the originas result.

Claim. $K T=K D$.
Proof. Note $\angle K T D=\frac{1}{2} \widehat{T M}=\frac{1}{2}(\widehat{T B}+\widehat{M C})=\angle T D K$.
Hence, it follows that

$$
K X \cdot K Y=K D^{2}=K T^{2}=K B \cdot K C
$$

so quadrilateral $B X Y C$ is cyclic. From this we deduce the inverse similarities

$$
\begin{aligned}
& \triangle K X D \approx \triangle K D Y \\
& \triangle K X B \approx \triangle K C Y .
\end{aligned}
$$

Hence,

$$
\angle B X D=\angle X K D-\angle K X B=\angle Y D K-\angle Y C K=\angle D Y C
$$

as needed.

