EGMO 2024/2 Evan Chen

TWITCH SOLVES ISL

Episode 146

Problem

Let ABC be a triangle with AC > AB, and denote its circumcircle by Ω and incenter by I. Let its incircle meet sides BC, CA, AB at D, E, F respectively. Let X and Y be two points on minor arcs \widehat{DF} and \widehat{DE} of the incircle, respectively, such that $\angle BXD = \angle DYC$. Let line XY meet line BC at K. Let T be the point on Ω such that KT is tangent to Ω and T is on the same side of line BC as A. Prove that lines TD and AI meet on Ω .

Video

https://youtu.be/Q1CLri5128I

External Link

https://aops.com/community/p30433677

Solution

We redefine the points in the reverse order: let M be the arc midpoint of minor arc BC, let T be the second intersection of ray TD with Ω , and let K be the point on line BCsuch that \overline{KT} is tangent to Ω . Then we will show that if a line through K meets the incircle again at X and Y, then $\angle BXD = \angle DYC$. A phantom point argument will then show the originas result.

Claim. KT = KD.

Proof. Note $\angle KTD = \frac{1}{2}\widehat{TM} = \frac{1}{2}(\widehat{TB} + \widehat{MC}) = \angle TDK.$

Hence, it follows that

$$KX \cdot KY = KD^2 = KT^2 = KB \cdot KC$$

so quadrilateral BXYC is cyclic. From this we deduce the inverse similarities

$$\triangle KXD \stackrel{\sim}{\sim} \triangle KDY \\ \triangle KXB \stackrel{\sim}{\sim} \triangle KCY.$$

Hence,

$$\angle BXD = \angle XKD - \angle KXB = \angle YDK - \angle YCK = \angle DYC$$

as needed.