EGMO 2024/1

Evan Chen

Twitch Solves ISL

Episode 146

Problem

Two different integers u and v are written on a board. We perform a sequence of steps. At each step we do one of the following two operations:
(i) If a and b are different integers on the board, then we can write $a+b$ on the board, if it is not already there.
(ii) If a, b and c are three different integers on the board, and if an integer x satisfies $a x^{2}+b x+c=0$, then we can write x on the board, if it is not already there.

Determine all pairs of starting numbers (u, v) from which any integer can eventually be written on the board after a finite sequence of steps.

Video

```
https://youtu.be/wb-9khsmdpA
```


External Link

https://aops.com/community/p30433696

Solution

Note that the following cases are impossible:

- If either $u=0$ or $v=0$, operation (i) cannot produce numbers, and (ii) cannot be used at all. Hence the task is obviously impossible.
- If $\{u, v\}=\{-1,1\}$, operation (i) produces 0 , and no more numbers can be added with operation (i) or (ii). So this case cannot be done.
- If $u, v<0$, then we claim all numbers written are negative. Indeed, (i) respects this; and also, if $a, b, c<0$ then no $x>0$ can obey $a x^{2}+b x+c=0$. So the task is impossible here too.

We claim the task is possible in all other cases.
Claim. We can write -1 .
Proof. We can write $u+v$, and the three numbers $u, v, u+v$ are different. The quadratic $u x^{2}+(u+v) x+v$ has root -1 .

Claim. We can write a positive number $m \geq 2$ on the board.
Proof. We assumed that at least one of u and v; say $u=\max (u, v)>0$. If $u \geq 2$ we're done. Suppose $u=1$; then v is some negative number with $v \leq-2$. We can write $(-1)+1=0$. Then $0 x^{2}+x+v=0$ has root $-v$, which is the desired number.

Let $m \geq 2$ be from the claim; then we can write $m-1 \geq 1$, and hence we can write all of $m-1,2 m-1,3 m-1, \ldots$ Thus (because we have -1) we can then write any nonnegative integer by adding -1 several times. (However, we cannot write -2 in this way, because we cannot add -1 to itself.)

But now for $n>0,-n$ is a root of $0 x^{2}+x+n$, so we can write the negative integers too.

