Twitch 145.1

Evan Chen

Twitch Solves ISL

Episode 145

Problem

Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all $x, y \in \mathbb{R}$, we have:

$$
f(x)=f(x+y+f(y)) .
$$

Video

https://youtu.be/tc9C60_2-KM

Solution

Let S be any \mathbb{Z}-submodule (additive subgroup) of \mathbb{R}. For each coset $T \in \mathbb{R} / S$ we choose a representative $\rho(T)$ of it; in other words we pick an arbitrary choice function

$$
f(x)=-\rho(x)
$$

is a solution to the given equation, and moreover all solutions are of this form.

- To check these work, note that $y+f(y)=y-\rho(y) \in S$, hence $\rho(x)=\rho(x+y-\rho(y))$, so they work.
- Conversely, given any function f satisfying the given equation, if we let

$$
S:=\langle y+f(y) \mid y \in \mathbb{R}\rangle_{\mathbb{Z}}
$$

then f is invariant under shifting by S, i.e. $f(x+s)=f(x)$ for all $x \in \mathbb{R}$ and $s \in S$. In other words, $f(x)$ only depends on $x(\bmod S)$. Since $x+f(x) \in S$ by construction, this finishes the proof.

