Taiwan MO 2024/4

Evan Chen

Twitch Solves ISL

Episode 145

Problem

Suppose O is the circumcenter of $\triangle A B C$, and E and F are points on segments $C A$ and $A B$ respectively with $E, F \neq A$. Let P be a point such that $P B=P F$ and $P C=P E$. Let $O P$ intersect $C A$ and $A B$ at points Q and R respectively. Let the line passing through P and perpendicular to $E F$ intersect $C A$ and $A B$ at points S and T respectively. Prove that points Q, R, S, and T are concyclic.

Video

https://youtu.be/eiHul2kJINE

External Link

https://aops.com/community/p29778110

Solution

Note that

$$
\begin{aligned}
& \measuredangle Q S T=\measuredangle(\overline{P S T}, \overline{A C})=90^{\circ}+\measuredangle(\overline{E F}, \overline{A C}) \\
& \measuredangle Q R T=\measuredangle(\overline{A B}, \overline{O P}) .
\end{aligned}
$$

So we can erase all the points Q, R, S, T from the picture and focus just on proving the claim that:
Claim. $\measuredangle(\overline{A B}, \overline{O P})=\measuredangle(\overline{E F}, \overline{A C})+90^{\circ}$.

Proof. Use complex numbers with $A B C$ the unit circle. Let P be any point, with coordinate p. Then the foot from P to $\overline{A C}$ has coordinates

$$
M:=\frac{1}{2}(p+a+c-a c \bar{p})
$$

and so (since M is the midpoint of $\overline{E C}$) we get

$$
E=2 \cdot M-c=p+a-a c \bar{p} .
$$

Analogously

$$
F=p+a-a b \bar{p}
$$

So then we have the ratio

$$
z:=\frac{E-F}{a-c} \div \frac{a-b}{p-0}=\frac{a \bar{p}(b-c) \cdot p}{(a-b)(a-c)}=p \bar{p} \cdot \frac{a(b-c)}{(a-b)(a-c)} .
$$

The complex conjugate is

$$
\bar{p} p \cdot \frac{\frac{1}{a}\left(\frac{1}{b}-\frac{1}{c}\right)}{\left(\frac{1}{a}-\frac{1}{b}\right)\left(\frac{1}{a}-\frac{1}{c}\right)}=-z .
$$

so z is pure imaginary and we're done.

