Frog jump
 Evan Chen

Twitch Solves ISL

Episode 145

Problem

There is a hidden infinite binary string $a_{1} a_{2} a_{3} \cdots \in\{0,1\}^{\infty}$ such that $\left\{t \in \mathbb{N}: a_{t}=1\right\}$ has upper density zero. The digits a_{t} are revealed in order. For each $t \geq 1$, before a_{t} is revealed, a frog decides to wait or cross the road. Then a_{t} is revealed. If the frog crossed the road and $a_{t}=1$, then the frog is squashed. If the frog crossed the road and $a_{t}=0$ then the frog has safely crossed the road. Otherwise the process repeats with a_{t+1}.

Determine whether one can find a strategy such that, regardless of which string $a_{1} a_{2} a_{3} \ldots$ is chosen, the frog successfully crosses the road with probability at least 99%.

Video

https://youtu.be/W2chl6FnsPg

External Link

https://aops.com/community/p27344416

Solution

Answer: yes.
Fix absolute constants $\delta, \varepsilon>0$.
Let's say an index $\ell \in \mathbb{Z}_{\geq 0}$ is bad if the density of 1 's in $a_{2} \ell \ldots a_{2^{\ell+1}-1}$ is more than δ; we also say the interval $\left[2^{\ell}, 2^{\ell+1}-1\right]$ is bad.

Claim. There are only finitely many bad indices.
Proof. If ℓ is a bad index, then the density of 1 's in $\left\{a_{1}, \ldots, a_{2^{\ell+1}-1}\right\}$ is at least $\delta / 2$.
The frog then employs the following strategy:

- Initialize $p=\varepsilon, \ell=0, t=2^{0}$, just before a_{1} is revealed.
- With probability p, commit to jumping at a uniform random index in the set $\left\{2^{\ell}, \ldots, 2^{\ell+1}-1\right\}$ (ignoring any future data).
- Otherwise, commit to not jumping for $t=2^{\ell}, \ldots, 2^{\ell+1}-1$. In that case, if the interval $\left[2^{\ell}, 2^{\ell+1}-1\right]$ turned out to be bad, halve the value of p.

Let $L=\left\{\ell_{0}, \ldots, \ell_{r}\right\}$ be the finite set of bad indices. The probability that the frog jumps in the bad interval $\left[2^{\ell_{i}}, 2^{\ell_{i}+1}-1\right]$ is at most $\frac{\varepsilon_{0}}{2^{i}}$ by the way the algorithm is set. Consequently, the total probability of a jump inside any bad interval is at most

$$
\sum_{i \geq 0} \frac{\varepsilon}{2^{i}}=2 \varepsilon .
$$

On the other hand, the probability of death when jumping inside a good interval is also at most δ. And the frog jumps at some point with probability 1.

Hence, the probability of success is at least $1-(2 \varepsilon+\delta)$. Therefore, picking e.g. $\varepsilon=\delta=\frac{1}{300}$ solves the problem.

