# XOOK 2023/2 

## Evan Chen

Twitch Solves ISL
Episode 144

## Problem

Let $A B C$ be a triangle with incenter $I$, which has foot $D$ to $B C$, and let $T$ be the $A$-mixtillinear touch point. Let $M$ be the midpoint of $B C$, which has foot $X$ to line $A I$. Let $A T$ intersect $(D X T)$ again at $Q$. Show that $(A X Q)$ is tangent to the incircle.

## Video

https://youtu.be/cuUQkgZ4xVc

## External Link

https://aops.com/community/p29571593

## Solution

Let $E$ be the contact point of the $A$-excircle, so $\overline{A T Q}$ and $\overline{A E}$ are isogonal. The circle centered at $M$ with radius $M D=M E$ intersects the incircle again at a point $W$ such that $\angle D W E=90^{\circ}$; this implies $A, W, E$ are collinear, $M W=M D=M E$, and $\overline{M W}$ is tangent to the incircle. (See USA TST 2015/1 for a figure with the same circle centered at $M$.)


Claim. WIDXM is cyclic with diameter $\overline{I M}$.
Proof. Because $\measuredangle I D M=\measuredangle I X M=\measuredangle I W M=90^{\circ}$.
Claim. $\overline{M W}$ is also tangent to ( $A W X$ ).
Proof. $\measuredangle W X A=\measuredangle W X I=\measuredangle W D I=\measuredangle W E D=\measuredangle M W E=\measuredangle M W A$.
Claim. $Q$ lies on ( $A X W$ ).
Proof. Note that

$$
\begin{aligned}
\measuredangle X Q T=\measuredangle X D T & =\measuredangle X D M+\measuredangle(\overline{M D}, \overline{D T})=\measuredangle X W M+\measuredangle(\overline{A E}, \overline{E M}) \\
& =\measuredangle X W M+\measuredangle W E M=\measuredangle X W M+\measuredangle M W E \\
& =\measuredangle X W E=\measuredangle X W A .
\end{aligned}
$$

