H2716390

Evan Chen

Twitch Solves ISL

Episode 144

Problem

Let a and b be fixed positive integers. We say that a prime p is fun if there exists a positive integer n satisfying the following conditions:

- p divides $a^{n!}+b$.
- p divides $a^{(n+1)!}+b$.
- $p<2 n^{2}+1$.

Show that there are finitely many fun primes.

Video

https://youtu.be/G_cRUZ1TEmU

External Link

https://aops.com/community/p23622966

Solution

We will consider $n>2^{100}$, since this adds at most finitely many primes. We also assume $p \nmid a b$ throughout, as well as $p>b+1$.

Note that we have

$$
a^{n!} \equiv-b \quad(\bmod p) \Longrightarrow a^{n!} \not \equiv 1 \quad(\bmod p)
$$

because we assume $p>b+1$. However, we also get

$$
a^{n \cdot n!} \equiv 1 \quad(\bmod p) .
$$

Thus, if e denotes the order of $a(\bmod p)$, then $e \nmid n!$, but $e \nmid n \cdot n!$. So there exists a prime q with $q \mid n$ such that

$$
\nu_{q}(n!)<\nu_{q}(e) \leq \nu_{q}(n!)+\nu_{q}(n) .
$$

We also know that

$$
e \mid p-1<2 n^{2} .
$$

Claim. We have $n=q$.
Proof. Assume not, meaning $q \leq n / 2$. Start by using the estimate

$$
n^{2.1}>2 n^{2}>q^{\nu_{q}(e)} \geq q^{\nu_{q}(n!)+1} \geq q^{\frac{n}{q}+1} .
$$

In particular, we certainly need $n^{2.1} \geq q^{3}$, so $q<n^{0.7}$. Using that, we can further estimate

$$
n^{2.1} \geq 2^{\frac{n}{q}+1} \geq 2^{n^{0.3}+1}
$$

which is false for $n>2^{100}$.
So e must be a multiple of n^{2}, but $e<2 n^{2}$, so in fact $e=n^{2}$ exactly. That means $p=n^{2}+1$. However p and n are both primes, so this is a contradiction.

Remark. The same proof shows there are finitely many fun primes if the condition $a, b>0$ is relaxed to a and b are nonzero integers with $b \neq-1$.

