USAMO 2024/4

Evan Chen

Twitch Solves ISL

Episode 143

Problem

Let m and n be positive integers. A circular necklace contains $m n$ beads, each either red or blue. It turned out that no matter how the necklace was cut into m blocks of n consecutive beads, each block had a distinct number of red beads. Determine, with proof, all possible values of the ordered pair (m, n).

Video

https://youtu.be/ZLOghPRDgoU

External Link

https://aops.com/community/p30227198

Solution

The answer is $m \leq n+1$ only.
Proof the task requires $m \leq n+1$. Each of the m blocks has a red bead count between 0 and n, each of which appears at most once, so $m \leq n+1$ is needed.

Construction when $m=n+1$. For concreteness, here is the construction for $n=4$, which obviously generalizes. The beads are listed in reading order as an array with $n+1$ rows and n columns. Four of the blue beads have been labeled B_{1}, \ldots, B_{n} to make them easier to track as they move.

$$
T_{0}=\left[\begin{array}{llll}
R & R & R & R \\
R & R & R & B_{1} \\
R & R & B & B_{2} \\
R & B & B & B_{3} \\
B & B & B & B_{4}
\end{array}\right] .
$$

To prove this construction works, it suffices to consider the n cuts $T_{0}, T_{1}, T_{2}, \ldots, T_{n-1}$ made where T_{i} differs from T_{i-1} by having the cuts one bead later also have the property each row has a distinct red count:

$$
T_{1}=\left[\begin{array}{llll}
R & R & R & R \\
R & R & B_{1} & R \\
R & B & B_{2} & R \\
B & B & B_{3} & B \\
B & B & B_{4} & R
\end{array}\right] \quad T_{2}=\left[\begin{array}{llll}
R & R & R & R \\
R & B_{1} & R & R \\
B & B_{2} & R & B \\
B & B_{3} & B & B \\
B & B_{4} & R & R
\end{array}\right] \quad T_{3}=\left[\begin{array}{llll}
R & R & R & R \\
B_{1} & R & R & B \\
B_{2} & R & B & B \\
B_{3} & B & B & B \\
B_{4} & R & R & R
\end{array}\right] .
$$

We can construct a table showing for each $1 \leq k \leq n+1$ the number of red beads which are in the $(k+1)$ st row of T_{i} from the bottom:

$$
\begin{array}{c|cccc}
k & T_{0} & T_{1} & T_{2} & T_{3} \\
\hline k=4 & 4 & 4 & 4 & 4 \\
k=3 & 3 & 3 & 3 & 2 \\
k=2 & 2 & 2 & 1 & 1 \\
k=1 & 1 & 0 & 0 & 0 \\
k=0 & 0 & 1 & 2 & 3
\end{array}
$$

This suggests following explicit formula for the entry of the (i, k) th cell which can then be checked straightforwardly:

$$
\#\left(\text { red cells in } k \text { th row of } T_{i}\right)= \begin{cases}k & k>i \\ k-1 & i \geq k>0 \\ i & k=0\end{cases}
$$

And one can see for each i, the counts are all distinct (they are ($i, 0,1, \ldots, k-1, k+1, \ldots, k$) from bottom to top). This completes the construction.

Construction when $m<n+1$. Fix m. Take the construction for $(m, m-1)$ and add $n+1-m$ cyan beads to the start of each row; for example, if $n=7$ and $m=5$ then the
new construction is

$$
T=\left[\begin{array}{lllllll}
C & C & C & R & R & R & R \\
C & C & C & R & R & R & B_{1} \\
C & C & C & R & R & B & B_{2} \\
C & C & C & R & B & B & B_{3} \\
C & C & C & B & B & B & B_{4}
\end{array}\right] .
$$

This construction still works for the same reason (the cyan beads do nothing for the first $n+1-m$ shifts, then one reduces to the previous case). If we treat cyan as a shade of blue, this finishes the problem.

