Brazil 2021/3
 Evan Chen
 Twitch Solves ISL
 Episode 142

Problem

Find all positive integers k for which there is an irrational $\alpha>1$ and a positive integer N such that $\left\lfloor\alpha^{n}\right\rfloor+k$ is a perfect square for every integer $n>N$.

Video

https://youtu.be/7wmIb_Byghc

External Link

https://aops.com/community/p24349942

Solution

The answer is $k=3$ only.
Construction. Consider the integer sequence

$$
x_{n}:=\left(\frac{3+\sqrt{5}}{2}\right)^{n}+\left(\frac{3-\sqrt{5}}{2}\right)^{n}
$$

defined by $x_{0}=2, x_{1}=3, x_{2}=7, x_{n+2}=3 x_{n+1}-x_{n}$, and so on. Then we have

$$
x_{n}^{2}:=\left(\frac{14+6 \sqrt{5}}{4}\right)^{n}+\left(\frac{14-6 \sqrt{5}}{4}\right)^{n}+2 .
$$

so

$$
\left\lfloor\left(\frac{14+6 \sqrt{5}}{4}\right)^{n}\right\rfloor=x_{n}^{2}-3
$$

holds for every n (since $0<\frac{14-6 \sqrt{5}}{4}<1$). This provides $\alpha=\frac{14+6 \sqrt{5}}{4}$ as an example.
Proof that $k=3$ is the only one possible. Throughout this solution, the big O notation treats α and k as $O(1)$.

For each $n>N$, we introduce the notation

$$
\alpha^{n}=x_{n}^{2}-k+\varepsilon_{n} \quad x_{n} \in \mathbb{N}, 0<\varepsilon_{n}<1 .
$$

In particular, $x_{n}=\sqrt{\alpha^{n}+O(1)}=\alpha^{n / 2}+O\left(\alpha^{-n / 2}\right)$.
We make the following assertion.
Claim. We have $1-\varepsilon_{n}=O\left(\alpha^{-n}\right)$ and $x_{n}^{2}=x_{2 n}+(k-1)$.
Proof. Note that

$$
\begin{aligned}
\alpha^{2 n} & =x_{2 n}^{2}-k+\varepsilon_{2 n} \\
\Longrightarrow\left(\alpha^{n}-x_{2 n}\right)\left(\alpha^{n}+x_{2 n}\right) & =-k+\varepsilon_{2 n} \\
\Longrightarrow\left(x_{n}^{2}-x_{2 n}-k+\varepsilon_{n}\right)\left(\alpha+x_{2 n}\right) & =\varepsilon_{2 n}-k
\end{aligned}
$$

Rearrange this to

$$
x_{n}^{2}-x_{2 n}-k=-\varepsilon_{n}-\frac{k-\varepsilon_{2 n}}{\alpha^{n}+x_{2 n}} .
$$

The right-hand side is an integer strictly between -2 and 0 , so it's -1 . So we get both the equality of the main terms

$$
x_{n}^{2}=x_{2 n}+(k-1)
$$

and the estimate on the error term

$$
1-\varepsilon_{n}=\frac{k-\varepsilon_{2 n}}{\alpha^{n}+x_{2 n}}=\frac{O(1)}{2 \alpha^{n}+O\left(\alpha^{-n}\right)}=O\left(\alpha^{-n}\right) .
$$

In the main equation, replacing x_{n}^{2} with $x_{2 n}+(k-1)$ gives

$$
\alpha^{n}=x_{2 n}-\left(1-\varepsilon_{n}\right)=x_{2 n}-\frac{k-\varepsilon_{2 n}}{\alpha^{n}+x_{2 n}} .
$$

The fraction equals $\frac{k-1+O\left(\alpha^{-n}\right)}{2 \alpha^{n}+O\left(\alpha^{-n}\right)}$ and so we get

$$
x_{2 n}=\alpha^{n}+\frac{\frac{k-1}{2}}{\alpha^{n}}+O\left(\alpha^{-2 n}\right)
$$

Multiplying both sides by $\alpha+\frac{1}{\alpha}$ gives

$$
\begin{aligned}
\left(\alpha+\frac{1}{\alpha}\right) x_{2 n} & =\alpha^{n+1}+\frac{\frac{k-1}{2}}{\alpha^{n+1}}+\alpha^{n-1}+\frac{\frac{k-1}{2}}{\alpha^{n-1}}+O\left(\alpha^{-2 n}\right) \\
& =x_{2 n+2}+x_{2 n-2}+O\left(\alpha^{-2 n}\right)
\end{aligned}
$$

Hence

$$
\frac{x_{2 n+2}+x_{2 n-2}}{x_{2 n}}=\alpha+\frac{1}{\alpha}+O\left(\alpha^{-3 n}\right)
$$

The critical claim is that the error term is actually zero exactly:
Claim. The equation

$$
\frac{x_{2 n+2}+x_{2 n-2}}{x_{2 n}}=\alpha+\frac{1}{\alpha}
$$

holds for large enough n.
Proof. Notice that $\frac{x_{2 n+2}+x_{2 n-2}}{x_{2 n}}-\frac{x_{2 n}+x_{2 n-4}}{x_{2 n-2}}$ is the difference of two terms which are $O\left(\alpha^{-3 n}\right)$. However, it's the difference of two rational numbers whose denominators are each $\Theta\left(\alpha^{n}\right)$, ergo their difference is at least $1 / O\left(\alpha^{2 n}\right)$. This is too large, so the error terms between consecutive fractions must be constant. Since it also decays to zero, it must be eventually zero.

From this, we have a bona fide linear recurrence with exact equalities

$$
x_{2 n}=\lambda_{+} \cdot \alpha^{n}+\lambda_{-} \cdot \alpha^{-n}
$$

for some constants λ_{+}and λ_{-}; but actually $\lambda_{+}=1$ and $\lambda_{-}=\frac{k-1}{2}$ to match our earlier equation for $x_{2 n}$; that is, we have exactly

$$
x_{2 n}=\alpha^{n}+\frac{\frac{k-1}{2}}{\alpha^{n}}
$$

On the other hand, we are supposed to have $x_{2 n}^{2}=x_{4 n}+(k-1)$ and comparing these two forces $\frac{k-1}{2}=1$, so $k=3$.

