USAMO 2024/5

Evan Chen

Twitch Solves ISL

Episode 141

Problem

Point D is selected inside acute triangle $A B C$ so that $\angle D A C=\angle A C B$ and $\angle B D C=$ $90^{\circ}+\angle B A C$. Point E is chosen on ray $B D$ so that $A E=E C$. Let M be the midpoint of $B C$. Show that line $A B$ is tangent to the circumcircle of triangle $B E M$.

Video

https://youtu.be/7M-b5zXXpaY

External Link

https://aops.com/community/p30227196

Solution

This problem has several approaches and we showcase a collection of them.
The author's original solution. Complete isosceles trapezoid $A B Q C$ (so $D \in \overline{A Q}$). Reflect B across E to point F.

Claim. We have $D Q C F$ is cyclic.
Proof. Since $E A=E C$, we have $\overline{Q F} \perp \overline{A C}$ as line $Q F$ is the image of the perpendicular bisector of $\overline{A C}$ under a homothety from B with scale factor 2 . Then

$$
\begin{aligned}
\measuredangle F D C & =-\measuredangle C D B=180^{\circ}-\left(90^{\circ}+\measuredangle C A B\right)=90^{\circ}-\measuredangle C A B \\
& =90^{\circ}-\measuredangle Q C A=\measuredangle F Q C .
\end{aligned}
$$

To conclude, note that

$$
\measuredangle B E M=\measuredangle B F C=\measuredangle D F C=\measuredangle D Q C=\measuredangle A Q C=\measuredangle A B C=\measuredangle A B M .
$$

Remark (Motivation). Here is one possible way to come up with the construction of point F (at least this is what led Evan to find it). If one directs all the angles in the obvious way, there are really two points D and D^{\prime} that are possible, although one is outside the triangle; they give corresponding points E and E^{\prime}. The circles $B E M$ and $B E^{\prime} M$ must then actually coincide since they are both alleged to be tangent to line $A B$. See the figure below.

One can already prove using angle chasing that $\overline{A B}$ is tangent to ($B E E^{\prime}$). So the point of the problem is to show that M lies on this circle too. However, from looking at the diagram, one may realize that in fact it seems

$$
\triangle M E E^{\prime} \stackrel{+}{\sim} \triangle C D D^{\prime}
$$

is going to be true from just those marked in the figure (and this would certainly imply the desired concyclic conclusion). Since M is a midpoint, it makes sense to dilate $\triangle E M E^{\prime}$ from B by a factor of 2 to get $\triangle F C F^{\prime}$ so that the desired similarity is actually a spiral similarity at C. Then the spiral similarity lemma says that the desired similarity is equivalent to requiring $\overline{D D^{\prime}} \cap \overline{F F^{\prime}}=Q$ to lie on both $(C D F)$ and $\left(C D^{\prime} F^{\prime}\right)$. Hence the key construction and claim from the solution are both discovered naturally, and we find the solution above. (The points $D^{\prime}, E^{\prime}, F^{\prime}$ can then be deleted to hide the motivation.)

Another short solution. Let Z be on line $B D E$ such that $\angle B A Z=90^{\circ}$. This lets us interpret the angle condition as follows:

Claim. Points A, D, Z, C are cyclic.
Proof. Because $\measuredangle Z A C=90^{\circ}-A=180^{\circ}-\measuredangle C D B=\measuredangle Z D C$.

Define W as the midpoint of $\overline{B Z}$, so $\overline{M W} \| \overline{C Z}$. And let O denote the center of (ABC).

Claim. Points M, E, O, W are cyclic.
Proof. Note that

$$
\begin{aligned}
\measuredangle M O E & =\measuredangle(\overline{O M}, \overline{B C})+\measuredangle(\overline{B C}, \overline{A C})+\measuredangle(\overline{A C}, \overline{O E}) \\
& =90^{\circ}+\measuredangle B C A+90^{\circ} \\
& =\measuredangle B C A=\measuredangle C A D=\measuredangle C Z D=\measuredangle M W D=\measuredangle M W E .
\end{aligned}
$$

To finish, note

$$
\begin{aligned}
\measuredangle M E B & =\measuredangle M E W=\measuredangle M O W \\
& =\measuredangle(\overline{M O}, \overline{B C})+\measuredangle(\overline{B C}, \overline{A B})+\measuredangle(\overline{A B}, \overline{O W}) \\
& =90^{\circ}+\measuredangle C B A+90^{\circ}=\measuredangle C B A=\measuredangle M B A .
\end{aligned}
$$

This implies the desired tangency.
A Menelaus-based approach (Kevin Ren). Let P be on $\overline{B C}$ with $A P=P C$. Let Y be the point on line $A B$ such that $\angle A C Y=90^{\circ}$; as $\angle A Y C=90^{\circ}-A$ it follows $B D Y C$ is cyclic. Let $K=\overline{A P} \cap \overline{C Y}$, so $\triangle A C K$ is a right triangle with P the midpoint of its hypotenuse.

Claim. Triangles $B P E$ and $D Y K$ are similar.
Proof. We have $\measuredangle M P E=\measuredangle C P E=\measuredangle K C P=\measuredangle P K C$ and $\measuredangle E B P=\measuredangle D B C=$ $\measuredangle D Y C=\measuredangle D Y K$.

Claim. Triangles $B E M$ and $Y D C$ are similar.
Proof. By Menelaus $\triangle P C K$ with respect to collinear points A, B, Y that

$$
\frac{B P}{B C} \frac{Y C}{Y K} \frac{A K}{A P}=1
$$

Since $A K / A P=2$ (note that P is the midpoint of the hypotenuse of right triangle $A C K$) and $B C=2 B M$, this simplifies to

$$
\frac{B P}{B M}=\frac{Y K}{Y C}
$$

To finish, note that

$$
\measuredangle D B A=\measuredangle D B Y=\measuredangle D C Y=\measuredangle B M E
$$

implying the desired tangency.

A spiral similarity approach (Hans $\mathbf{Y u}$). As in the previous solution, let Y be the point on line $A B$ such that $\angle A C Y=90^{\circ}$; so $B D Y C$ is cyclic. Let Γ be the circle through B and M tangent to $\overline{A B}$, and let $\Omega:=(B C Y D)$. We need to show $E \in \Gamma$.

Denote by S the second intersection of Γ and Ω. The main idea behind is to consider the spiral similarity

$$
\Psi: \Omega \rightarrow \Gamma \quad C \mapsto M \text { and } Y \mapsto B
$$

centered at S (due to the spiral similarity lemma), and show that $\Psi(D)=E$. The spiral similarity lemma already promises $\Psi(D)$ lies on line $B D$.

Claim. We have $\Psi(A)=O$, the circumcenter of $A B C$.
Proof. Note $\triangle O B M \stackrel{+}{\sim} \triangle A Y C ;$ both are right triangles with $\measuredangle B A C=\measuredangle B O M$.
Claim. Ψ maps line $A D$ to line $O P$.
Proof. If we let P be on $\overline{B C}$ with $A P=P C$ as before,

$$
\measuredangle(\overline{A D}, \overline{O P})=\measuredangle A P O=\measuredangle O P C=\measuredangle Y C P=\measuredangle(\overline{Y C}, \overline{B M})
$$

As Ψ maps line $Y C$ to line $B M$ and $\Psi(A)=O$, we're done.
Hence $\Psi(D)$ should not only lie on $B D$ but also line $O P$. This proves $\Psi(D)=E$, so $E \in \Gamma$ as needed.

