JMO 2024/1

Evan Chen

Twitch Solves ISL

Episode 141

Problem

Let $A B C D$ be a cyclic quadrilateral with $A B=7$ and $C D=8$. Points P and Q are selected on line segment $A B$ so that $A P=B Q=3$. Points R and S are selected on line segment $C D$ so that $C R=D S=2$. Prove that $P Q R S$ is a cyclic quadrilateral.

Video

https://youtu.be/N3WG9AY9HYY

External Link

https://aops.com/community/p30216434

Solution

Here are two possible approaches.
The one-liner. The four points P, Q, R, S have equal power -12 with respect to $(A B C D)$. So in fact they're on a circle concentric with ($A B C D$).

The external power solution. We distinguish between two cases.
Case where $A B$ and $C D$ are not parallel. We let lines $A B$ and $C D$ meet at T. Without loss of generality, A lies between B and T and D lies between C and T. Let $x=T A$ and $y=T D$, as shown below.

By power of a point,

$$
\begin{aligned}
A B C D \text { cyclic } \Longleftrightarrow x(x+7) & =y(y+8) \\
P Q R S \text { cyclic } \Longleftrightarrow(x+3)(x+4) & =(y+2)(y+6) .
\end{aligned}
$$

However, the latter equation is just the former with 12 added to both sides. (That is, $(x+3)(x+4)=x(x+7)+12$ while $(y+2)(y+6)=y(y+8)+12$. . So the conclusion is immediate.

Case where $A B$ and $C D$ are parallel. In that case $A B C D$ is an isosceles trapezoid. Then the entire picture is symmetric around the common perpendicular bisector of the lines $A B$ and $C D$. Now $P Q R S$ is also an isosceles trapezoid, so it's cyclic too.

