H3278100

Evan Chen

Twitch Solves ISL

Episode 140

Problem

Let a, b, c be positive real numbers such that $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1$. Show that

$$
a+b+c \leq \sqrt{b^{3}+a c^{2}+a^{2} c} .
$$

Video

https://youtu.be/sJsAqXuGj-A

External Link

https://aops.com/community/p30181272

Solution

Note that by Cauchy-Schwarz the inequality

$$
\left(b^{3}+a^{2} c+a c^{2}\right)\left(\frac{1}{b}+\frac{1}{c}+\frac{1}{a}\right) \geq(b+a+c)^{2}
$$

holds for all $a, b, c>0$ which is what we wanted.

