H3087478

Evan Chen

Twitch Solves ISL
Episode 139

Problem

Positive integers a, b, c, d satisfy the conditions

$$
\begin{aligned}
a+b+c+d & =(a-b)^{2} \\
a b & =c d .
\end{aligned}
$$

Show that $4 c+1$ is a square.

Video

https://youtu.be/NCPmljDOITk

External Link

https://aops.com/community/p27901399

Solution

The product condition implies that we can choose integers $u, v, x, y>0$ with

$$
a=u x, \quad b=v y, \quad c=v x, \quad d=u y
$$

In that case we can write

$$
\begin{aligned}
a+b+c+d & =(u+v)(x+y) \\
(a-b)^{2} & =(u x-v y)^{2}
\end{aligned}
$$

Define

$$
\begin{aligned}
\alpha & :=u+v \\
\beta & :=x+y .
\end{aligned}
$$

Then the given equation becomes

$$
(x \alpha-v \beta)^{2}=\alpha \beta
$$

This lets us set $\alpha=\operatorname{gcd}(\alpha, \beta) m^{2}, \beta=\operatorname{gcd}(\alpha, \beta) n^{2}$ for coprime $m, n>0$. This implies that

$$
x m^{2}-v n^{2}= \pm m n \Longrightarrow x\left(\frac{m}{n}\right)^{2} \mp \frac{m}{n}-v=0
$$

So in particular, the quadratic equation

$$
x \theta^{2} \mp \theta-v=0
$$

in the variable θ has a rational solution $\frac{m}{n}$. Therefore the discriminant

$$
(\mp 1)^{2}-4 v x=1+4 v x=4 c+1
$$

is a perfect square, as desired.
Remark. For any positive integer k, an example of a satisfying quadruple is

$$
(a, b, c, d)=\left(k^{2},(k+1)^{2}, k(k+1), k(k+1)\right)
$$

which corresponds to

$$
\begin{aligned}
(u, v, x, y) & =(k, k+1, k, k+1) \\
\alpha=\beta & =2 k+1 \\
m=n & =1 .
\end{aligned}
$$

Remark. The problem is actually false if the hypothesis $a, b, c, d>0$ is dropped, but only in the situation where the variables α and β could equal zero. For example, this happens if $(a, b, c, d)=(1,1,-1,-1)$.

