H3087478

Evan Chen

TWITCH SOLVES ISL

Episode 139

Problem

Positive integers a, b, c, d satisfy the conditions

$$a+b+c+d = (a-b)^2$$
$$ab = cd.$$

Show that 4c + 1 is a square.

Video

https://youtu.be/NCPmljDOITk

External Link

https://aops.com/community/p27901399

Solution

The product condition implies that we can choose integers u, v, x, y > 0 with

$$a = ux$$
, $b = vy$, $c = vx$, $d = uy$.

In that case we can write

$$a + b + c + d = (u + v)(x + y)$$

 $(a - b)^2 = (ux - vy)^2$.

Define

$$\alpha \coloneqq u + v$$
$$\beta \coloneqq x + y.$$

Then the given equation becomes

$$(x\alpha - v\beta)^2 = \alpha\beta.$$

This lets us set $\alpha = \gcd(\alpha, \beta)m^2$, $\beta = \gcd(\alpha, \beta)n^2$ for coprime m, n > 0. This implies that

$$xm^2 - vn^2 = \pm mn \implies x\left(\frac{m}{n}\right)^2 \mp \frac{m}{n} - v = 0.$$

So in particular, the quadratic equation

$$x\theta^2 \mp \theta - v = 0$$

in the variable θ has a rational solution $\frac{m}{n}$. Therefore the discriminant

$$(\mp 1)^2 - 4vx = 1 + 4vx = 4c + 1$$

is a perfect square, as desired.

Remark. For any positive integer k, an example of a satisfying quadruple is

$$(a,b,c,d) = (k^2,(k+1)^2,k(k+1),k(k+1))$$

which corresponds to

$$(u, v, x, y) = (k, k+1, k, k+1)$$

$$\alpha = \beta = 2k+1$$

$$m = n = 1.$$

Remark. The problem is actually false if the hypothesis a, b, c, d > 0 is dropped, but only in the situation where the variables α and β could equal zero. For example, this happens if (a, b, c, d) = (1, 1, -1, -1).