China TST Quiz 2007/1/3

 Evan Chen

 Evan Chen}

Twitch Solves ISL

Episode 139

Problem

Fix an integer $n \geq 1$. Prove there exists exactly one polynomial $P(x)$ of degree n with real coefficients, such that $P(0)=1$ and $(x+1)(P(x))^{2}-1$ is odd.

Video

https://youtu.be/rmhfgp47avs

External Link

https://aops.com/community/p1365013

Solution

Suppose the polynomial P obeys

$$
2=(x+1) P(x)^{2}+(-x+1) P(-x)^{2} .
$$

Work in $\mathbb{R}\left[y, y^{-1}\right]$ and substitute

$$
x=\frac{1}{2}\left(y+\frac{1}{y}\right) .
$$

Then the above equation can be rewritten as

$$
\begin{aligned}
4 & =\left(y+\frac{1}{y}+2\right) P(x)^{2}-\left(y+\frac{1}{y}-2\right) P(-x)^{2} \\
\Longleftrightarrow 4 y & =((y+1) P(x))^{2}-((y-1) P(-x))^{2} \\
\Longleftrightarrow 4 y & =((y+1) P(x)+(y-1) P(-x))((y+1) P(x)-(y-1) P(-x)) .
\end{aligned}
$$

Using factorization in $\mathbb{R}\left[y, y^{-1}\right]$, we see there must exist an integer $d \geq 0$ and a nonzero real number ε such that we have identities

$$
\begin{aligned}
2 \varepsilon \cdot y^{d+1} & =(y+1) P(x) \pm(y-1) P(-x) \\
\frac{2}{\varepsilon} \cdot y^{-d} & =(y+1) P(x) \mp(y-1) P(-x)
\end{aligned}
$$

for some opposite choice of signs \pm. Replacing y with $1 / y$, it follows $\varepsilon=\varepsilon^{-1} \Longrightarrow \varepsilon= \pm 1$. So the system of equations is equivalent to

$$
\begin{aligned}
& y^{d+1}+y^{-d}=\varepsilon(y+1) P(x) \\
& y^{d+1}-y^{-d}= \pm \varepsilon(y-1) P(-x)
\end{aligned}
$$

Now, the first equation implies that

$$
\begin{aligned}
\varepsilon P(x) & =\frac{y^{d+1}+y^{-d}}{y+1} \\
& =\left(y^{d}+\frac{1}{y^{d}}\right)-\left(y^{d-1}+\frac{1}{y^{d-1}}\right)+\cdots+(-1)^{d-1}\left(y+\frac{1}{y}\right)+(-1)^{d} .
\end{aligned}
$$

The theory of Chebyshev polynomials guarantees that $y^{k}+\frac{1}{y^{k}}$ is a degree- k polynomial in x for each $k \geq 0$. Hence we see there is a unique choice of polynomial P of degree n (corresponding to $d=n$) which makes the identity $P(x)=\frac{\varepsilon \frac{y^{d+1}+y^{-d}}{y+1}}{}$ true, for each $\varepsilon \in\{ \pm 1\}$. When we add the condition $P(0)=1$ (set $y=i$ so $x=0$), we find only one $\varepsilon \in\{ \pm 1\}$ is valid.

Conversely, we have the implication

$$
\varepsilon(y+1) P(x)=y^{d+1}+y^{-d} \Longrightarrow \varepsilon(y-1) P(-x)= \pm\left(y^{d+1}-y^{-d}\right)
$$

which follows readily by making the substitution $y \mapsto i y$. So the choice of polynomial P we just mentioned will satisfy the entire system, ergo (reversing the logic above) will satisfy the desired condition. In other words, the unique possibility for P does indeed work.

Remark. The first few actual polynomials P are:

$$
\begin{aligned}
& P(x)=1 \\
& P(x)=1-2 x \\
& P(x)=1+2 x-4 x^{2} \\
& P(x)=1-4 x-4 x^{2}+8 x^{3} \\
& P(x)=1+4 x-12 x^{2}-8 x^{3}+16 x^{4} .
\end{aligned}
$$

