Mexico Q3

Evan Chen

Twitch Solves ISL

Episode 138

Problem

Let Γ_{1} and Γ_{2} be circles intersecting at points A and B. A line through A intersects Γ_{1} and Γ_{2} at C and D respectively. Let P be the intersection of the lines tangent to Γ_{1} at A and C, and let Q be the intersection of the lines tangent to Γ_{2} at A and D. Let X be the second intersection point of the circumcircles of $B C P$ and $B D Q$, and let Y be the intersection of lines $A B$ and $P Q$. Prove that C, D, X and Y are concyclic.

Video

https://youtu.be/c5NGYpfv80Q

External Link

https://aops.com/community/p14889633

Solution

Ignore the point X for now and focus on getting control over Y. We start with the following claim:

Claim. Let Z be the reflection of A over Y. Then Z lies on ($B C D$).

Proof. Reflect A over P and Q to get P^{\prime} and Q^{\prime}, collinear with Z. Then let K be the foot from A to $P^{\prime} Q^{\prime}$, which lies on the circles with diameter $\overline{A P^{\prime}}$ and $\overline{A Q^{\prime}}$ (that pass through C and D respectively). Now,

$$
\measuredangle B C K=\measuredangle B C D+\measuredangle D C K=\measuredangle Z A P+\measuredangle A P^{\prime} K=\measuredangle A Z K=\measuredangle B Z K
$$

so C lies on $(B Z K)$. Then so does D, and we're done.
We then trade in Z for the midpoints M and N of $\overline{C A}$ and $\overline{A D}$.
Claim. Point Y lies on both $(C B N)$ and ($D B M$).
Proof. Follows by power of a point from A on the previous claim.
Bring back point X now.

Now, for the main calculation, we have from symmedian theory that

$$
\begin{aligned}
& \measuredangle C X B=\measuredangle C P B=\measuredangle B M A=\measuredangle B M D=\measuredangle B Y D \\
& \measuredangle B X D=\measuredangle B Q D=\measuredangle A N B=\measuredangle C N B=\measuredangle C Y B .
\end{aligned}
$$

So summing gives $\measuredangle C X D=\measuredangle C Y D$, as needed.
Remark. Note that X also lies on line $P Q$ because $\measuredangle P X B=\measuredangle P C B=\measuredangle C A B=$ $\measuredangle D A B=\measuredangle Q D B=\measuredangle Q X B$.

