H3226403

Evan Chen

Twitch Solves ISL

Episode 138

Problem

Let $A B C$ be a triangle with circumcircle Ω and orthocenter H. Let the midpoint of $A H$ be N and let the reflections of N over $\overline{A C}, \overline{A B}$ be N_{1}, N_{2}, respectively. Let the line perpendicular to $N_{1} N_{2}$ through N_{1} intersect $A C$ at K and let the line perpendicular to $N_{1} N_{2}$ through N_{2} intersect $A B$ at L. The circumcircle of triangle $A K L$ intersect Ω at A and X; let $H X$ intersect Ω at X and Y. Show that $\overline{B Y} \| \overline{H L}$ and $\overline{C Y} \| \overline{H K}$.

Video

https://youtu.be/YTRMS2MG8P0

External Link

https://aops.com/community/p29539773

Solution

Let $\overline{B H}$ and $\overline{C H}$ meet Ω again at B^{\prime} and C^{\prime}, respectively. It's known that $\overline{A O} \perp \overline{B^{\prime} C^{\prime}}$, and these two lines meet at the midpoint M of $\overline{B^{\prime} C^{\prime}}$. Ignore points X and Y for now.

Claim. Point L is the circumcenter of $\triangle M H C^{\prime}$. Similarly, point K is the circumcenter of $\triangle M H B^{\prime}$.

Proof. The perpendicular bisector of $\overline{H C^{\prime}}$ is line $M B$ while the perpendicular bisector of $\overline{C^{\prime} M}$ is the line through N_{2} perpendicular to $\overline{C^{\prime} M} \| \overline{N_{1} N_{2}}$. So these two perpendicular bisectors indeed meet at L.

Claim. Points K, H, L, A are cyclic.
Proof. We see $\overline{K L}$ is the perpendicular bisector of $\overline{M H}$. Then, it follows that

$$
\measuredangle M H L=90^{\circ}-\measuredangle H C^{\prime} M=90^{\circ}-\measuredangle C C^{\prime} B^{\prime}=90^{\circ}-\measuredangle C B B^{\prime}=\measuredangle A C B
$$

Similarly, $\measuredangle K H M=\measuredangle C B A$. So $\measuredangle K H L=\measuredangle K H M+\measuredangle M H L=\measuredangle C A B=\measuredangle K A L$.
Remark. Alternatively, trig Ptolemy provides a straightforward way to prove the second claim without having noticed the circumcenters from before.

Remark. In fact, quadrilateral $A L H K$ is harmonic too. Indeed, $\overline{A O}$ is the median of $\triangle A L K$, because line $\overline{A O}$ is halfway between parallel lines $\overline{L N_{2}}$ and $\overline{N_{1} K}$, And lines $\overline{A O}$ and $\overline{A H}$ are isogonal in $\angle L A K$.

So actually M is the A-Humpty point of $\triangle A K L$, while N is the A-Dumpty point. However, we will not use this in what follows.

We finally turn our attention to X and Y which we previously ignored. To finish, we simply use Reim's theorem in the form

$$
\measuredangle B Y H=\measuredangle B Y X=\measuredangle B A X=\measuredangle L A X=\measuredangle L H A
$$

