EMCC 2023 T-14

Evan Chen

Twitch Solves ISL

Episode 138

Problem

Equilateral hexagon $A B C D E F$ has opposite sides parallel, side length 3, and area 5. Find $A C \cdot B D \cdot C E \cdot D F \cdot E A \cdot F B$.

Video

https://youtu.be/FjKluBxpqRk

Solution

Construct parallelogram $C O E D$. Then $A B C O$ is also a parallelogram (because $\vec{B}-\vec{A}=$ $\vec{D}-\vec{E}=\vec{C}-\vec{O}$), and similarly $A F E O$ is a parallelogram. So the point O thus the circumcenter of triangle $A C E$, because $A O=C O=E O=3$, as shown below.

In particular, we have

$$
\frac{A C \cdot C E \cdot E A}{4 \cdot 3}=\operatorname{Area}(A C E)=\frac{\operatorname{Area}(A B C D E F)}{2}=\frac{5}{2}
$$

and hence

$$
A C \cdot C E \cdot E A=30
$$

Now $D F=A C, F B=C E, B D=E A$ so the answer is $30^{2}=900$.

