Twitch 137.3
 Evan Chen
 Twitch Solves ISL
 Episode 137

Problem

For every positive integer n, there exists exactly one function $f_{n}:\{1,2, \ldots, n\} \rightarrow \mathbb{R}$ such that for all positive integers $k \leq n$,

$$
f_{n}(k)+f_{n}(2 k)+\cdots+f_{n}\left(k\left\lfloor\frac{n}{k}\right\rfloor\right)=\frac{1}{k}\left\lfloor\frac{n}{k}\right\rfloor .
$$

Find $f_{1000}(1)-f_{999}(1)$.

Video

https://youtu.be/zDQbD1BOFCw

External Link

https://aops.com/community/p28878234

Solution

We solve the system of equations much more generally as follows:
Claim. Fix an integer $n \geq 1$. Consider the system of equations in n variables x_{1}, x_{2}, ..., given by

$$
\begin{aligned}
c_{1} & =x_{1}+x_{2}+x_{3}+x_{4}+\cdots \\
c_{2} & =x_{2}+x_{4}+x_{6}+x_{8}+\cdots \\
c_{3} & =x_{3}+x_{6}+x_{9}+x_{12}+\cdots \\
& \vdots \\
c_{n} & =x_{n}
\end{aligned}
$$

where the k 'th equation has $x_{k}+x_{2 k}+\cdots+x_{k\lfloor n / k\rfloor}$ on the right-hand side. Then

$$
x_{1}=\sum_{k \leq n} \mu(k) c_{k}
$$

where μ is the Möbius function.
Proof. If we substitute in the expressions for c_{k} on the right-hand side, the coefficient of x_{m} is $\sum_{k \mid m} \mu(k)$ which is known to be 1 for $m=1$ and 0 otherwise.

Applying this directly here we get

$$
\begin{aligned}
f_{1000}(1) & =\sum_{k \leq 1000} \mu(k) \cdot \frac{1}{k} \cdot\left\lfloor\frac{1000}{k}\right\rfloor \\
f_{999}(1) & =\sum_{k \leq 999} \mu(k) \cdot \frac{1}{k} \cdot\left\lfloor\frac{999}{k}\right\rfloor .
\end{aligned}
$$

Note that

$$
\left\lfloor\frac{1000}{k}\right\rfloor-\left\lfloor\frac{999}{k}\right\rfloor= \begin{cases}1 & k \mid 1000 \\ 0 & k \nmid 1000 .\end{cases}
$$

So subtracting, the final answer is

$$
\sum_{k \mid 1000} \frac{\mu(k)}{k}=1-\frac{1}{2}-\frac{1}{5}+\frac{1}{10}=\frac{2}{5} .
$$

