HMNT 2023 Gen10
 Evan Chen

Twitch Solves ISL

Episode 136

Problem

Let $A B C D$ be a convex trapezoid such that $\angle A B C=\angle B C D=90^{\circ}, A B=3, B C=6$, and $C D=12$. Among all points X inside the trapezoid satisfying $\angle X B C=\angle X D A$, compute the minimum possible value of $C X$.

Video

https://youtu.be/xR7rzNMpQ1w

External Link

https://www.hmmt.org/www/archive/271

Solution

Let $E=\overline{B C} \cap \overline{A D}$.
Claim. The point X moves along the circumcircle of $\triangle E B D$.
Proof. Because $\angle X B E=180^{\circ}-\angle C B X=180^{\circ}-\angle A D X=180^{\circ}-\angle E D X$.

It remains to do the calculation, which is surprisingly quick. Work in a coordinate system with

$$
\begin{aligned}
& C=(0,0) \\
& B=(0,6) \\
& D=(12,0) \\
& A=(3,6) \\
& E=(0,8) .
\end{aligned}
$$

By power of a point, the second intersection of $(E B D)$ with $C D$ has

$$
C K=\frac{C B \cdot C E}{C D}=\frac{6 \cdot 8}{12}=4 .
$$

In other words, $K=(4,0)$. So the circumcenter of $\triangle E B D$ is located at

$$
O=(8,7) .
$$

The radius of the circle is then $\sqrt{65}$, while $C O=\sqrt{113}$. It follows the answer is $\sqrt{113}-\sqrt{65}$.

