HMNT 2023 Gen10 Evan Chen

TWITCH SOLVES ISL

Episode 136

Problem

Let ABCD be a convex trapezoid such that $\angle ABC = \angle BCD = 90^{\circ}$, AB = 3, BC = 6, and CD = 12. Among all points X inside the trapezoid satisfying $\angle XBC = \angle XDA$, compute the minimum possible value of CX.

Video

https://youtu.be/xR7rzNMpQlw

External Link

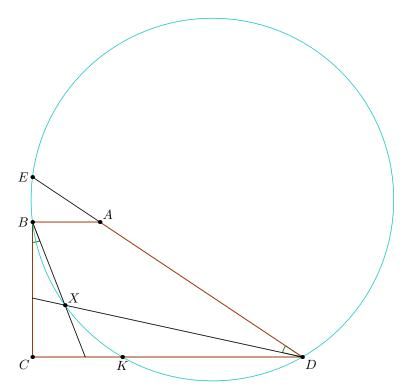
https://www.hmmt.org/www/archive/271

Solution

Let $E = \overline{BC} \cap \overline{AD}$.

Claim. The point X moves along the circumcircle of $\triangle EBD$.

Proof. Because $\angle XBE = 180^{\circ} - \angle CBX = 180^{\circ} - \angle ADX = 180^{\circ} - \angle EDX$. \Box



It remains to do the calculation, which is surprisingly quick. Work in a coordinate system with

$$C = (0,0)$$

$$B = (0,6)$$

$$D = (12,0)$$

$$A = (3,6)$$

$$E = (0,8).$$

By power of a point, the second intersection of (EBD) with CD has

$$CK = \frac{CB \cdot CE}{CD} = \frac{6 \cdot 8}{12} = 4.$$

In other words, K = (4, 0). So the circumcenter of $\triangle EBD$ is located at

$$O = (8, 7).$$

The radius of the circle is then $\sqrt{65}$, while $CO = \sqrt{113}$. It follows the answer is $\sqrt{113} - \sqrt{65}$.