H3170234

Evan Chen

Twitch Solves ISL

Episode 136

Problem

Solve over \mathbb{Z} the functional equation

$$
f(2 x+f(y))+f(f(2 x))=y .
$$

Video

https://youtu.be/nyKKvc87dg8

External Link

https://aops.com/community/p28861167

Solution

The answers are

$$
f(x)=\left\{\begin{array}{lll}
a-x & x \equiv 0 & (\bmod 2) \\
b-x & x \equiv 1 & (\bmod 2)
\end{array}\right.
$$

where a and b are either both even, or $a=b$. It can be checked that all of these work, so we prove they're the only solutions.

Let $P(x, y)$ be the given assertion.

- $P(0,0) \Longrightarrow f(f(0))=0$.
- $P(0, t) \Longrightarrow f(f(t))=t$.
- $P(1, f(z)) \Longrightarrow f(z+2)=z-2$.

The last equation $f(z+2)=z-2$ implies f takes the above form for some a and b, so we'd be done if we could show the parity condition. If a is odd, then plug in $x=0$ to deduce $a=b$; if b is odd, plug in $x=1$ to deduce $b=a$. This finishes the problem.

