H3167668

Evan Chen

Twitch Solves ISL

Episode 135

Problem

In triangle $A B C$, let I be the incenter, V be the Bevan point, and let the line through B and the de Longchamps point intersect $A C$ again at X. Let D be the A-intouch point, and let $I D$ intersect $A B$ at P. Let $B V$ intersect $I X$ at Q, and let the reflection of $I D$ over the midpoint of $B C$ intersect $A C$ at R. Prove that P, Q, and R are collinear.

Video

https://youtu.be/3tbbD4GaaHs

External Link

https://aops.com/community/p28829164

Solution

Introduce the Darboux cubic K_{4}. It's known to pass through the points A, B, the orthocenter H, the incenter I, the circumcenter O, the infinity point along the A-altitude (denoted ∞), the de Longchamps point L (which is the pivot), and the Bevan point V. Because L is the pivot, it also passes through X.

Consider now the following 3×3 array of points all lying on K_{4} :

$$
\left[\begin{array}{ccc}
A & \infty & H \\
I & V & O \\
X & B & L
\end{array}\right]
$$

The three rows denote collinear points, as does the last column. So by Cayley-Bacharach the six points in the first two columns lie on a conic, say γ.

Then by Pascal theorem on

$$
B V \infty I X A
$$

we conclude P, Q, R are collinear, as desired.

