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Problem
In triangle ABC, let I be the incenter, V be the Bevan point, and let the line through B
and the de Longchamps point intersect AC again at X. Let D be the A-intouch point,
and let ID intersect AB at P . Let BV intersect IX at Q, and let the reflection of ID
over the midpoint of BC intersect AC at R. Prove that P , Q, and R are collinear.

Video
https://youtu.be/3tbbD4GaaHs

External Link
https://aops.com/community/p28829164
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https://www.youtube.com/watch?v=3tbbD4GaaHs&list=PLi6h8GM1FA6yHh4gDk_ZYezmncU1EJUmZ
https://aops.com/community/p28829164
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Solution
Introduce the Darboux cubic K4. It’s known to pass through the points A, B, the
orthocenter H, the incenter I, the circumcenter O, the infinity point along the A-altitude
(denoted ∞), the de Longchamps point L (which is the pivot), and the Bevan point V .
Because L is the pivot, it also passes through X.
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Consider now the following 3× 3 array of points all lying on K4:A ∞ H
I V O
X B L


The three rows denote collinear points, as does the last column. So by Cayley-Bacharach
the six points in the first two columns lie on a conic, say γ.

Then by Pascal theorem on
BV∞IXA

we conclude P , Q, R are collinear, as desired.
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