Twitch 133.6
 Evan Chen

Twitch Solves ISL
Episode 133

Problem

Let $A B C$ be a triangle and let Z be the A-Dumpty point. Let D, E, F be the reflections of Z over $B C, A C, A B$, respectively. Let the nine-point circles of $A B C$ and $D E F$ intersect at X, Y. Show that A, Z, X, Y are cyclic.

Video

https://youtu.be/xitwCD-EOu0

External Link

https://aops.com/community/p28667211

Solution

We will use complex numbers with $A B C$ the unit circle.

Let H be the reflection of Z across the A-altitude. We compute a bunch of complex numbers:

$$
\begin{aligned}
0 & =(t-b)(a-c)+(t-c)(a-b)=(2 a-b-c) t-(b(a-c)+c(a-b)) \\
\Longrightarrow t & =\frac{b(a-c)+c(a-b)}{2 a-b-c} . \\
\Longrightarrow z & =\frac{a(2 a-b-c)+b(a-c)+c(a-b)}{2(2 a-b-c)}=\frac{a^{2}-b c}{2 a-b-c} . \\
\bar{z} & =\frac{b c-a^{2}}{a(2 b c-a(b+c))} \\
1-b \bar{z} & =\frac{a(2 b c-a(b+c))-b\left(b c-a^{2}\right)}{a(2 b c-a(b+c))}=\frac{2 a b c-a^{2} c-b^{2} c}{a(2 b c-a(b+c))}=\frac{-c(a-b)^{2}}{a(2 b c-a(b+c))} \\
\frac{1}{a}-\bar{z} & =\frac{(2 b c-a(b+c))-\left(b c-a^{2}\right)}{a(2 b c-a(b+c))}=\frac{b c-a b-a c+a^{2}}{a(2 b c-a(b+c))}=\frac{(a-b)(a-c)}{a(2 b c-a(b+c))} \\
d & =b+c-b c \bar{z} \\
e & =c+a-c a \bar{z}=c+a-\frac{c\left(2 b c-a^{2}\right)}{2 b c-a(b+c)}=\frac{-a c^{2}+a b c-a^{2} b}{2 b c-a(b+c)}=\frac{a\left(b c-c^{2}-a b\right)}{2 b c-a(b+c)} \\
f & =a+b-a b \bar{z} \\
h & =a-\frac{b c}{a}+b c \bar{z}
\end{aligned}
$$

Now, the proof requires three main claims.

Claim. The point H coincides with the orthocenter of $\triangle D E F$. In particular, we can set X as the foot of the altitude from A, which will lie on both nine-point circles.

Proof. Note that

$$
\frac{e-h}{d-f}=\frac{c-c a \bar{z}+\frac{b c}{a}-b c \bar{z}}{(c-a)(1-b \bar{z})}=\frac{c(a+b)\left(\frac{1}{a}-\bar{z}\right)}{(c-a)(1-b \bar{z})}=\frac{a+b}{a-b}
$$

which is the negative of its own conjugate.
Claim. The midpoint Y of $E F$ also lies on the nine-point circle of $A B C$.
Proof. Note that

$$
e+f-(a+b+c)=a(1-b \bar{z}-c \bar{z})=\frac{-c(a-b)^{2}-c\left(b c-a^{2}\right)}{2 b c-a(b+c)}=\frac{-b c(-2 a+b+c)}{2 b c-a(b+c)}
$$

which is equal to its own conjugate. Therefore, the reflection of the orthocenter over Y lies on the unit circle.

Claim. $A X D Y$ is a parallelogram.
Proof. Where $Y=\frac{e+f}{2}$, note that

$$
2 d-(e+f)=b+c-2 a-(2 b c-a(b+c)) \cdot \frac{b c-a^{2}}{a(2 b c-a(b+c))}=a+b+c-\frac{b c}{a}
$$

which is twice the displacement form $X=\frac{1}{2}(a+b+c-b c / a)$ to A.
In particular, $A Y=X D=X Z$, so that $A Y Z X$ is an isosceles trapezoid, and cyclic.

