H3195318

Evan Chen

Twitch Solves ISL

Episode 133

Problem

Given two positive real numbers x, y such that $x+y<\frac{\pi}{2}$ and $\sin (2 y)+\sin (2 x+2 y)=$ $2 \sin (2 x)$, determine, with proof, the value of

$$
\frac{\cos (x+y) \sin (y)}{\sin (x)} .
$$

Video

https://youtu.be/5A5Yu65JV_U

External Link

https://aops.com/community/p29162889

Solution

First manipulate both sides of the given equation to get

$$
\begin{aligned}
\sin (2 x+2 y)+\sin (2 y) & =\sin ((x+2 y)+x)+\sin ((x+2 y)-x) \\
& =2 \sin (x+2 y) \cos x \\
2 \sin (2 x) & =4 \sin x \cos x .
\end{aligned}
$$

So the problem condition is equivalent to

$$
\begin{aligned}
\sin (x+2 y) & =2 \sin (x) \\
\sin ((x+y)+y) & =2 \sin ((x+y)-y) \\
\sin (x+y) \cos (y)+\cos (x+y) \sin (y) & =2 \sin (x+y) \cos (y)-2 \cos (x+y) \sin (y) \\
3 \cos (x+y) \sin (y) & =\sin (x+y) \cos (y)
\end{aligned}
$$

On the other hand, we could also write

$$
\sin (x+y) \cos (y)+\cos (x+y) \sin (y)=2 \sin (x) .
$$

Put together the two most recent equations to eliminate the undesired $\sin (x+y) \cos (y)$ term gives

$$
3 \cos (x+y) \sin (y)=2 \sin (x)-\cos (x+y) \sin (y) \Longrightarrow \frac{\cos (x+y) \sin (y)}{\sin (x)}=\frac{1}{2}
$$

